

Email & Web

info@assetgeotechnical.com.au www.assetgeotechnical.com.au

Sydney

Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Phone: 02 9878 6005

Coronation Property Co. Pty Ltd

Proposed Mixed-Use Development 20 Shepherd Street, Liverpool, NSW

Report on Geotechnical Investigation, Salinity & Acid Sulfate Management Plan

2606-R2 Rev2 10 November 2015

DOCUMENT AUTHORISATION

Proposed Mixed-Use Development 20 Shepherd Street, Liverpool, NSW

Report on Geotechnical Investigation, Salinity & Acid Sulfate Management Plan

Prepared for Coronation Property Co. Pty Ltd

Prepared by Asset Geotechnical Engineering Pty Ltd

2606-R2 Rev2 10 November 2015

For and on behalf of

Asset Geotechnical Engineering Pty Ltd

Mark Bartel

BE MEngSc GMQ RPEQ MIEAust CPEng NPER (Civil) Managing Director / Senior Principal Geotechnical Engineer

DOCUMENT CONTROL

Distribution Register

Сору	Media	Recipient	Location
1	Secure PDF	Emily Raleigh (emily@coronationproperty.com.au)	Coronation Property Co. Pty Ltd
2	Secure PDF	Mark Bartel	Asset Geotechnical Engineering

Revision History

Rev	Date of Issue	Revision Details	Author	Reviewer	Approver
0	31 October 2014	Initial issue	JZ/KB	КВ	MAB
1	5 November 2014	Figure 2 updated / RL levels included	JZ	КВ	MAB
2	10 November 2015	Additional basement level	JZ	MAB	MAB
					MAS

[©] Copyright Asset Geotechnical Engineering Pty Ltd. All rights reserved

Contents

1.	INTE	RODUCTION	1
	1.1	General	1
	1.2	Scope of Work	1
2.	Field	dwork and Laboratory Testing	2
	2.1	Borehole Investigation	2
	2.2	Laboratory Testing	3
3.	Site	Description	3
4.	Sub	surface Conditions	3
	4.1	Geology	3
	4.2	Stratigraphy	4
	4.3	Groundwater	5
	4.4	Laboratory Test Results	5
5.	Disc	cussions & Recommendations	7
	5.1	Salinity	7
	5.2	Acid Sulphate Soils	7
	5.3	Aggressivity to Steel and Concrete	7
	5.4	Temporary and Permanent Shoring	8
	5.5	Dewatering	10
	5.6	Earthworks	10
	5.7	Foundations	13
6	I IMI	PIOITATI	1/1

Figures

- 1 Site Locality
- 2 Test Locations

Appendices

- A Information Sheets
- B Field Investigation Results
- C Laboratory Test Results

1. INTRODUCTION

1.1 General

This report presents the results of a geotechnical investigation for the above project. The investigation was commissioned on 5 August 2014 by Mr Scott Gordon of Coronation Property Co. Pty Ltd. The work was carried out in accordance with a proposal by Asset Geotechnical Engineering Pty Ltd (Asset) dated 1st August 2014, reference 2606-P1.

An additional Geotechnical Investigation was carried out by Asset with the subsequent report issued on 7 August 2015, reference 2606-1-R1.

Drawings supplied to us for this investigation comprised:

 Architectural plans by Woods Bagot (Project No. 120530, Drawing Nos. A2099-Rev A, A2100-Rev K, A2101-Rev M, A2102-Rev R, A2103-Rev K, A3401-Rev F, A3405-Rev D, Dated 28 October 2015)

Based on the supplied drawings, it is understood that the project involves the construction of a new development adjacent to the Georges River, comprising two residential apartment blocks extending over nine to fifteen storeys in height. Excavation of up to about 10m depth is anticipated for the proposed three basement levels.

1.2 Scope of Work

The objective of the investigation is to provide information on the surface and subsurface conditions for design of the proposed structures, and to provide comments and recommendations relating to:

- Excavation conditions, methodology and monitoring, with reference to Council's requirements
- Subgrade preparation and earthworks
- Suitable foundations and founding stratum
- Allowable bearing pressure (and shaft adhesion for piles)
- Batter slopes
- Excavation support design parameters
- Groundwater and dewatering issues
- A preliminary acid sulphate soil assessment in accordance with ASSMAC¹ recommendations.
- Comment on the requirement for an Acid Sulphate Soil Management Plan (ASSMP).
- If required, preparation of an ASSMP.
- Discussion of preliminary salinity assessment results as per Council's DCP (2012) and 'Site Investigation for Urban Salinity (DLWC, 2002).
- Requirements for a Salinity Management plan and additional investigation/testing at the site if applicable.

In order to achieve the project objectives, the following scope of work was carried out:

Geotechnical

Review of available reports and maps held within our files.

• Walkover observations of site conditions.

¹ Stone, Y, Ahern CR, and Blunden B (1998). Acid Sulfate Soils Manual 1998. Acid Sulfate Soil Management Advisory Committee, Wollongbar, NSW, Australia.

- Drilling and logging of 5 boreholes to a target depth of about 3m into rock. Drilling was carried out by auger drilling then washbore drilling to refusal, and then coring to the target depth. Standard Penetration Testing was carried out in soils as appropriate to the subsurface conditions.
- Installation of groundwater monitoring wells in two of the boreholes. These wells were purged of drilling
 water and readings taken approximately one week after the investigation.
 Laboratory testing, comprising point load strength index testing on recovered rock core at 1m nominal
 depth intervals.

Acid Sulphate Soil Assessment/Management Plan

- Sampling of soils at nominal 0.5m depth intervals and transport to a NATA registered laboratory under refrigerated chain-of-custody protocols;
- Preliminary screening for acid sulphate soils by pH and pH in H₂O₂

Salinity Assessment

- Desktop salinity assessment.
- Walkover observations of site conditions including salinity indicators.
- Urban salinity assessment laboratory testing

Reporting

Engineering assessment and reporting

This report should be read in conjunction with the attached Information Sheets. Particular attention is drawn to the limitations inherent in site investigations and the importance of verifying the subsurface conditions inferred herein.

2. FIELDWORK AND LABORATORY TESTING

2.1 Borehole Investigation

The investigation was carried out between 14th to 21st August 2014 under the supervision of a Geotechnical Engineer from this office. A total of five boreholes (BH1 to BH5) were drilled using a track-mounted drilling rig. Drilling was carried out by auger drilling then washbore drilling to refusal on bedrock, and then coring to the target depth. Standard Penetration Testing was carried out in soils as appropriate to the subsurface conditions.

On completion of logging and sampling, a 50mm diameter PVC standpipe piezometer was installed in borehole BH2 and BH3 to depths of 16.6m and 12.7m respectively. The piezometer construction comprised machine-slotted screening over the bottom 6m, then backfilling the annulus with sand to 1m above the screen and then a 0.5m thick bentonite plug on top of the sand to prevent surface water directly entering the piezometer. The hole above the bentonite was backfilled with spoil from the drilling, and a cast-iron road box concreted flush with the adjacent ground surface. The remaining boreholes were backfilled with the drilling spoil after logging and sampling.

The borehole locations were set out by our engineer relative to existing site features and site access constraints. The subsurface conditions encountered were recorded during the progress of the excavations. Surface levels at the test locations were estimated by interpolation from the survey plan provided (SDG Land Development Solutions, Ref: 6352, Dated 27 August 2014).

Engineering logs and explanatory notes are attached to this report. The test locations are shown on the attached Figure 2.

2.2 Laboratory Testing

In order to aid with the Acid Sulphate Soil and Salinity assessment, soils were sampled at nominal 0.5m depth intervals in BH1, BH4 and BH5 and were transport to a NATA registered laboratory under refrigerated chain-of-custody protocols. Test results are attached and presented in Section 4.3. Testing was carried out generally in accordance with AS1289 "Methods of Testing Soil for Engineering Purposes" or as described in the laboratory test results.

Rock core samples recovered during the fieldwork were delivered to a NATA registered laboratory and tested for point load strength index. Test results are attached.

3. SITE DESCRIPTION

The site is located along the eastern side of Shepherd Street and southern side of Atkinson Street in the suburb of Liverpool, as shown in Figure 1. It has a frontage to Atkinson Street of about 110m wide and is about 80m to 125m deep. The site is bounded to the northeast, east, and south by the Georges River. The entire site compromises a total area of approximately 9873m² with a building area of 3560m².

Topographically, the site is located within a low-lying broad and generally flat terrain with the Georges River as a local low point running along the eastern site boundary. In the site vicinity, the natural ground surface generally slopes upward toward north and west at 1 to 2°.

At the time of the investigation, the existing development comprises a large factory warehouse in the south-western corner of the block. A brick house exists in the north-western corner of the site which is unoccupied. A large amount of logged trees, timbers, and other construction materials are scattered along the eastern side (adjacent to Georges River) on the site. The rest of the site is flat open space covered by asphalt, and the entire site is bounded by electric fences.

All site structures appeared to be in overall fair conditions with no visible sign of cracking or structural damage. All existing neighbouring developments are reasonably distant from the site and are not anticipated to include basement levels.

Vegetation comprises various shrubs and grass covering the banks of Georges River, adjacent to the eastern site boundary.

Drainage across the site mainly occurs via overland flow towards north via a stormwater drainage connecting the gutter on the end of Atkinson Street.

4. SUBSURFACE CONDITIONS

4.1 Geology

The 1:100,000 Penrith Geological Map indicates the site is underlain by alluvial soils comprising clayey quartzose Sand, and Clay. The site is also located near the boundary with Bringelly Shale away from the river, which includes shale, carbonaceous claystone, laminite, fine to medium-grained lithic sandstone and rare coal. These rocks typically weather to form residual clay soils of medium to high plasticity.

4.2 Stratigraphy

The following summary description is provided for the conditions observed at the test locations for this investigation. The detailed conditions at each test location are recorded on the attached logs. For specific design input, reference should be made to the logs and/or the specific test results, in lieu of the following summary.

Table 1 - Generalised Subsurface Profile

Layer	Description Table 1 – Generalise	BH1 (m)	BH2 (m)	BH3 (m)	BH4 (m)	BH5 (m)
	Ground Surface Level (m AHD)	RL 10.3	RL 9.9	RL 10.1	RL 9.5	RL 10.1
Pavement	Asphalt	0 – 0.1	0 – 0.2	0 – 0.1		0 – 0.1
Fill	Clayey/Sandy GRAVEL, fine to coarse grained. Dark grey, well graded	0.2 – 1.4	0.2 – 0.6		0 - 0.4	
	Gravelly CLAY, low to medium plasticity mottled grey and brown			0.1 - 0.5	0.4 - 1.7	0.3 - 1.0
	Clayey/SAND, fine to coarse grained, brown, well graded	1.4 - 2.4		0.5 - 1.0	1.7 - 2.0 4.2 - 5.7	0.1 - 0.3 1.0 - 1.6
	Sandy CLAY, low to medium plasticity, brown mottled grey	2.4 - 3.5	0.6 - 3.8	1.0 - 2.6	2.0 - 4.2 5.7 - 6.9	
Alluvium	SAND, fine to medium grained, brown	3.5 - 8.3	5.3 - 8.3		6.9 - 11	1.6 - 3.3
	Sandy CLAY, low plasticity, grey mottled brown	8.3 - 10.3	3.8 - 5.3	2.6 - 6.8	11 - 12.9	3.3 - 5.5
	Clayey SAND, fine to coarse grained, brown			6.8 - 9.7		5.5 - 9.5
	Sandy CLAY, low plasticity, grey mottled brown with fine to medium grained sand		8.3 - 12.0			9.5 - 11.4
Bedrock	SHALE, dark grey, highly to extremely weathered, distinct lamination, thinly to medium bedded (assessed Class 4 Shale²)	11.2-11.7			15.0-15.3	11.4-12.7 13.6-14.0
	SHALE, dark grey, moderately weathered,	10.3-11.2	12-13.4			12.7-13.6
	distinct lamination, thinly to medium bedded (assessed Class 3 Shale)	11.7-14.75				14.0- 14.32
	SHALE, dark grey, moderately to slightly weathered (assessed Class 3/2 Shale)			9.7-11.6	12.9-15.0 15.3- 16.08	
	SHALE, dark grey, distinct lamination, thinly to medium bedded (assessed Class 2 Shale)		13.4- 16.75	11.6- 12.83		

² Pells, P.J.N., Mostyn, G & Walker, B.F., *Foundations on Sandstone and Shale in the Sydney Region*, Australian Geomechanics Journal, December 1998

4.3 Groundwater

Groundwater seepage was observed during drilling at a depth of 7m in BH1. It is noted that groundwater observation may have been made before water levels had stabilised.

Two monitoring wells were installed in boreholes BH2 and BH3 to depths of 16.6m and 12.7m respectively after drilling, and water was bailed out immediately after the installation. Groundwater levels were measured in the piezometers on 28 August 2014 and indicate groundwater depths of **6.5m** and **6.4m** (RLs **3.4m** and **3.7m** AHD) in boreholes BH2 and BH3 respectively.

4.4 Laboratory Test Results

Results from the laboratory testing undertaken on selected soil samples for Salinity and Acid Sulphate Soil are summarised in Table 2A and Table 2B, with discussions in Section 5.1.

Results for Point Load Strength Index on recovered rock core are attached in this report.

Table 2A - Laboratory Test Results: Salinity

Test Location & Depth (m)	Resistivity (Ωm)	Salinity (EC 1:5 dS/m)	Na (mg/kg)	Chloride (mg/kg)	Sulphate (mgSO₄/kg)	EC mS/cm	pH in H₂O	pH in CaCl2	Exchangeable Sodium %	Calculated ECe (dS/m)
BH1 3.5m	26.94	0.14	61.7	5.1	180	0.14	6.7	6.2	4.5	1.2
BH1 6.5m	161.24	0.04	13.6	25.3	20	0.04	7.1	6.4	3.2	0.9
BH4 4.0m	6.66	0.45	205	52.2	600	0.45	5.7	5.3	10.3	3.9
BH4 7.0m	39.3	0.03	606	13.4	20	0.03	7.8	6.5	6	0.7

Table 2B - Laboratory Test Results: Acid Sulphate Soils

Test Location & Depth	•	Test Results		
	рН	pH in H₂O₂	Drop in pH	
BH1 0.5m	8.25	8.67	-0.42 (increase)	
BH1 1.0m	8.22	7.7	0.52	
BH1 1.5m	6.56	5.37	1.19	
BH1 2.0m	7.94	6.61	1.33	
BH1 2.5m	7.53	6.8	0.73	
BH1 3.5m	6.66	6.22	0.44	
BH1 4.0m	6.85	5.38	1.47	
BH1 4.5m	7.14	6.65	0.49	
BH1 5.0m	6.79	5.65	1.14	
BH1 5.5m	6.65	5.53	1.12	
BH1 6.0m	6.53	4.95	1.58	
BH1 6.5m	6.66	6.8	-0.14 (increase)	
BH1 7.0m	6.82	5.51	1.31	
BH4 0.5m	8.51	8.65	-0.14 (increase)	
BH4 1.0m	8.1	8.06	0.04	
BH4 1.5m	7.88	7.69	0.19	
BH4 2.0m	8.06	7.08	0.98	
BH4 2.5m	8.08	7.51	0.57	
BH4 3.0m	6.62	6.59	0.03	
BH4 4.0m	7.24	6.56	0.68	
BH5 3.5m	7.25	7.48	-0.23 (increase)	
BH5 4.0m	7.25	7.57	-0.32 (increase)	
BH5 5.0m	7.03	7.05	-0.02 (increase)	
BH5 5.5m	7.4	4.99	2.41	
BH5 6.0m	6.83	5.78	1.05	
BH5 7.0m	6.92	5.78	1.14	
BH5 7.5m	7.12	5.73	1.39	
BH4 8.0m	6.4	4.72	1.68	

5. DISCUSSIONS & RECOMMENDATIONS

Based on the lower basement finished floor level of **RL 0.700m AHD**, and from the results of this investigation, it is assessed that the basement level will be up to about 3m below the observed groundwater level, and would be within alluvial soils and shale bedrock of variable strength.

Key geotechnical constraints to the development include groundwater control, excavation support, excavation and foundation conditions. Recommendations for design and construction of the development are provided in the following sections.

5.1 Salinity

According to the then DIPNR³, the site lies within an area mapped as having a Moderate Salinity Potential.

The laboratory test results indicate that the tested soils are classified as non-saline (AS2870-2011 Table 5.1) with a calculated ECe of ≤4dS/m in all tests. Therefore, no Salinity Management Plan is required for this project, and no further investigation is required for salinity assessment purposes.

However, given that the site is within an area mapped as having a Moderate salinity potential, it is recommended that design and construction of structures be carried out in accordance with "Building in a Saline Environment" 2nd edition by DIPNR (2008), or more recent, relevant publications.

5.2 Acid Sulphate Soils

In accordance with ASSMAC, pH values of less than or equal to 4 indicate that actual acid sulphate soils (AASS) are present. Potential acid sulphate soils (PASS) are indicated where pH in H₂O₂ values are less than 3.5 (preferably 3), and where the pH drop is more than 1 unit.

The results of the testing found that no sample had a pH of less than 4 or a pH in H_2O_2 of less than 3.5. From this, AASS or PASS is unlikely to be present in the site soils within the proposed depth of excavation. Although 12 samples exhibited a pH drop of more than 1 unit with the addition of H_2O_2 , the final pH was higher than the indicator cut-off values for both AASS and PASS.

Considering that the material at the site is not classified as AASS or PASS, we assess that an Acid Sulphate Soil Management Plan (ASSMP) is not required for this project.

5.3 Aggressivity to Steel and Concrete

The laboratory test results indicate that the soils are classified as "Non-aggressive" with respect to concrete piles and steel piles (as per AS2159-2009) for all except two tests. "Moderate" and "Mild" aggressivity classifications were assessed for resistivity tests at BH4 (4m depth) and BH4 (7m depth) respectively.

For a 50 year design life, minimum concrete strength of 32MPa and a minimum cover to reinforcement of 45mm (cast-in-place piles) is recommended for a "Non-Aggressive" environment in AS2159-2009 for concrete piles. However, the more onerous test results from BH4 indicate that an increased concrete strength (40MPa) and cover to reinforcement (65mm) may be required in some areas. Further testing may be required to delineate the affected area, unless the higher concrete strength and cover is adopted throughout.

_

³ Department of Infrastructure, Planning and Natural Resources, "Salinity Potential in Western Sydney", 2002

5.4 Temporary and Permanent Shoring

It is understood that permanent batter slopes are not proposed for the development. The proposed depth of excavation and the potential lack of clearance between the basement and boundary would preclude temporary batters, and therefore temporary shoring will be required. Depending on the design of the shoring, it could also be incorporated into the permanent foundation and retaining works.

Design of retaining walls will need to consider both long-term (i.e. permanent) and short-term (i.e. during construction) loading conditions, as well as the possible impact on adjoining developments. A number of possible temporary shoring systems could be considered for the site. These are summarised in Table 3 following, together with advantages and disadvantages.

Option Method Disadvantages **Advantages** 1 Soldier piles (bored) Relatively low cost. Risk of instability and loss of ground and steel walers (or Can include strip drainage behind infill Forms a poor seal against groundwater. shotcrete infill panels. panels) 2 Steel sheet pile Rapid installation. Vibration may not be acceptable for adjoining (driven or developments. Lower cost that Option 3. hydraulically Permanent wall required. Low permeability water barrier. installed) Will require soil anchors. Amenable to joint caulking. Shallow rock may limit driving depth 3 Contiguous or secant Can form part of the permanent structure. For secant piles, ensuring complete contact of all bored piles piles over full pile length may be difficult. Minimum noise and vibration. Additional finishing may be required following Can maximise site building space as no excavation if a 'smooth' internal wall is required. temporary wall is required. Relatively high cost. Permanent water proofing can be incorporated. May require soil anchors along boundaries where high level footings are located. Low permeability water barrier (secant piling very low permeability compared to contiguous piling) Cutter Soil Mix Can form part of the permanent structure. Additional finishing may be required following excavation if a 'smooth' internal wall is required. (CSM) Minimum noise and vibration. Relatively high cost. Can maximise site building space as no temporary wall is required. May require soil anchors along boundaries where high level footings are located. Permanent water proofing can be incorporated. Low permeability water barrier

Table 3 - Summary of Shoring Options

5.4.1 Temporary Shoring

Based on the advantages and disadvantages listed in Table 3, we recommend a contiguous or secant bored pile wall (Option 3) or a CSM wall (Option 4) for the basement excavation. This wall could be incorporated into the permanent retaining and foundation works. Options 1 and 2 are not likely to be suitable due to the depth of excavation support required and presence of groundwater.

For retained heights of up to 6 or 7m or where control of lateral deflections is required due to adjacent buildings, temporary rock anchors are likely to be required. Rock anchors should be inclined below horizontal to ensure anchorage in bedrock and should be designed to have a free length that extends beyond an imaginary line drawn upwards at an angle of 45° from the toe of the wall. The minimum free length should be

3 m. Anchor holes should be clean and adequately flushed, with grouting and other installation procedures carried out carefully and in accordance with normal good anchoring practice.

It is anticipated that rock anchors will be temporary only and that the structure will provide permanent restraint of the retaining walls. It may be necessary to obtain permission from the controlling authorities prior to installing temporary anchors around the perimeter of the site. In addition, care should be taken to avoid damaging buried services or pipes, during anchor installation.

5.4.2 Permanent Retaining Walls

It is assumed that permanent retaining walls will have permanent lateral restraint provided by the basement floors and roof level and may be designed as braced retaining walls. Depending on the sensitivity of adjacent structures to lateral movement, it may be necessary to provide ground anchors to provide further resistance against lateral earth pressures and control horizontal movement. Further advice should be sought once the pile loads and layout are known.

5.4.3 Design Approach - Earth Pressure

Cantilever walls may be designed for a triangular earth pressure distribution using a lateral earth pressure coefficient (K_a) of 0.5 where it is desired to minimise deflections (e.g. where adjacent to existing structures), and 0.4 elsewhere. Rock anchors should also be considered where it is required to minimise lateral deflection of temporary shoring (e.g. where adjacent to high level footings or buried services adjoining the site).

Braced retaining walls may be designed for a uniform lateral earth pressure of $0.65 * \gamma * H * K_a$ where $\gamma =$ unit weight of retained soil (say $18kN/m^3$), H = height of wall, and K_a = earth pressure coefficient (0.4 or 0.5 as noted above). It is expected that 2m embedment of piles in alluvial sand and clay, below basement level, would provide the required "kick-in" resistance until the slab is poured. However where shoring piles are required to provide long-term vertical bearing capacity (e.g. secant piles), it is considered that these soils would not provide adequate bearing for the structural loads. Such piles should therefore be socketed at least 0.75m into bedrock to provide toe "kick-in" resistance as well as providing the required bearing capacity.

Assessed Class 3 Shale or better is likely to provide adequate overturning resistance for the socketed piles. For assessment of passive restraint for piles embedded below excavation level, we recommend a triangular pressure distribution with a preliminary coefficient of passive pressure (K_p) of 2.5 for the soils and 10 for Class 3 shale up to a maximum of 200kPa.

Appropriate surcharge loading at the finished surface level should also be considered during the design of the wall.

Detailed construction supervision, monitoring and inspections will be required during the piling and subsequent bulk excavation to ensure and adequate standard of workmanship and to minimise potential problems.

5.4.4 Design Approach – Soil/Structure Interaction

Analysis and design using a simplistic earth-pressure approach may yield an overly-conservative shoring design, and in some cases may be unconservative. We recommend that consideration be given to carrying out a more rigorous soil/structure interaction analysis using appropriate methodology (e.g. 2D FEM modelling), and with appropriate geotechnical parameters for the various strata. This should be carried out by an experienced Geotechnical Engineer.

5.5 Dewatering

In order to construct the basement, it will be necessary to dewater to about 0.5m below the proposed bulk excavation level. Where lift pits or other local excavations extend below the bulk excavation level, it would be necessary to locally dewater not less than about 0.5m below such local excavations.

Temporary lowering of the groundwater level can cause settlement of the soil profile due to a change in the stress regime. The magnitude of settlement depends on the soil type and condition, draw down depth and duration, and historical water levels.

Contiguous or secant piles to bedrock, or CSM walls, together with internal dewatering would minimise the potential risks and should provide adequate control of groundwater for construction purposes. The development should be designed to minimise the risk of settlement induced by groundwater lowering by designing the basement structure as a "tanked" excavation (i.e. with impermeable retaining walls and floor structure) to at least 1m above the groundwater fluctuations at the site. In the absence of adequate long-term groundwater monitoring records, it is suggested that a groundwater level nominally 1.5 m above the level measured in investigation (i.e. RL 5.2 m AHD) be adopted for preliminary design of the basement. Permanent dewatering is not recommended.

The quantity of seepage expected to flow into the excavation during construction is unknown. It will depend on the in-situ permeability of the sandy clay/ clayey sand soils, the jointing / fracturing of the underlying shale bedrock, the flow path length, and the type and adequacy of construction of the temporary shoring adopted (e.g. contiguous versus secant piling versus CMS wall). At this stage no in situ or laboratory permeability tests of the site subsurface profile has been undertaken. However, based on the borehole soil description of the sandy clays and with reference to empirical charts, we anticipate that the permeability of the sandy clays would be in the order of 10⁻⁴ to 10⁻⁷ cm/sec. The mass permeability of the underlying bedrock could be of a similar order to the sandy clays.

Only experienced dewatering subcontractors with appropriate monitoring systems should be considered. We recommend further involvement of an experienced Geotechnical Engineer and Hydro geologist during the design, construction and operation / monitoring of groundwater control systems.

5.6 Earthworks

5.6.1 Excavation

The bulk excavation for the proposed development is anticipated to be mostly through fill and alluvial sand/clay, and partially into shale bedrock. It is anticipated that the soils and low strength bedrock (i.e. Class 5 and 4 Shale) could be readily excavated using conventional earthmoving equipment (e.g. hydraulic excavator bucket).

Excavation within medium or higher strength bedrock (i.e. Class 3 and above Shale) will likely require use of ripper tooth fitted to a hydraulic excavator bucket, a dozer fitted with ripper tooth, or a hydraulic hammer fitted to an excavator, possibly supplemented by rock saw and rock splitting techniques.

5.6.2 Vibration Management

Australian Standard AS 2187: Part 2-2006 recommends the frequency dependent guideline values and assessment methods given in BS 7385 Part 2-1993 "Evaluation and measurement for vibration in buildings Part 2" as they "are applicable to Australian conditions". The standard sets guide values for building vibration

based on the lowest vibration levels above which damage has been credibly demonstrated. These levels are judged to give a minimum risk of vibration-induced damage, where minimal risk for a named effect is usually taken as a 95% probability of no effect.

Sources of vibration that are considered in the standard include demolition, blasting (carried out during mineral extraction or construction excavation), piling, ground treatments (e.g. compaction), construction equipment, tunnelling, road and rail traffic and industrial machinery.

For residential structures, BS 7385 recommends vibration criteria of 7.5 mm/s to 10 mm/s for frequencies between 4 Hz and 15 Hz, and 10 mm/s to 25 mm/s for frequencies between 15 Hz to 40 Hz and above. These values would normally be applicable for new residential structures or residential structures in good condition. Higher values would normally apply to commercial structures, and more conservative criteria would normally apply to heritage structures.

However, structures can withstand vibration levels significantly higher than those required to maintain comfort for their occupants. Human comfort is therefore likely to be the critical factor in vibration management.

Excavation methods should be adopted which limit ground vibrations at the adjoining developments to not more than 10mm/sec. Vibration monitoring is recommended to verify that this is achieved. However, if the contractor adopts methods and / or equipment in accordance with the recommendations in Table 4 for a ground vibration limit of 5mm/sec, vibration monitoring may not be required.

The limits of 5mm/sec and 10mm/sec are expected to be achievable if rock breaker equipment or other excavation methods are restricted as indicated in Table 4.

			• • •	
Distance	Maximum Peak Parti	cle Velocity 5mm/sec	Maximum Peak Particle Velocity 10mm/sec*	
from adjoining structure (m)	Equipment	Operating Limit (% of Maximum Capacity)	Equipment	Operating Limit (% of Maximum Capacity)
1.5 to 2.5	Hand operated jackhammer only	100	300 kg rock hammer	50
2.5 to 5.0	300 kg rock hammer	50	300 kg rock hammer or 600 kg rock hammer	100 50
5.0 to 10.0	300 kg rock hammer	100	600 kg rock hammer	100
	600 kg rock hammer	50	900 kg rock hammer	50

Table 4 – Recommendations for Rock Breaking Equipment

At all times, the excavation equipment must be operated by experienced personnel, according to the manufacturer's instructions, and in a manner consistent with minimising vibration effects.

Use of other techniques (e.g. chemical rock splitting, rock sawing), although less productive, would reduce or possibly eliminate risks of damage to adjoining property through vibration effects transmitted via the ground. Such techniques may be considered if an alternative to rock breaking is necessary. If rock sawing is carried out around excavation boundaries in not less than 1m deep lifts, a 900 kg rock hammer could be used at up to 100% maximum operating capacity with an assessed peak particle velocity not exceeding 5

^{*} Vibration monitoring is recommended for 10mm/sec vibration limit.

mm/sec, subject to observation and confirmation by a Geotechnical Engineer at the commencement of excavation.

It is pointed out that the rock classification system used in Table 1 is intended primarily for use in design of foundations, and is not intended to be used to directly assess rock excavation characteristics. Excavation contractors should refer to the detailed engineering logs, core photographs, laboratory strength tests, and inspection of rock core, and should not rely solely on the rock classifications presented in geotechnical engineering reports, when assessing the suitability of their excavation equipment for the proposed development. Further geotechnical advice must be sought if rock excavation characteristics are critical to the proposed development.

It should be noted that vibrations that are below threshold levels for building damage may be experienced at adjoining developments. Rock excavation methodology should also take into account acceptable noise limits as per the "Interim Construction Noise Guideline" (NSW EPA).

5.6.3 Subgrade Preparation

The following general recommendations are provided for subgrade preparation for earthworks, pavements, slab-on-ground construction, and minor structures:

- Strip topsoil and fill. Remove unsuitable materials from site (e.g. concrete and material containing deleterious matter). Stockpile remainder for re-use as landscaping material or remove from site.
- Excavate alluvial soils, stockpiling for re-use as engineered fill or remove to spoil.
- Where soil is exposed at bulk excavation level, compact the upper 150mm depth to a dry density ratio
 (AS1289.5.4.1–2007) not less than 100% Standard. Areas which show visible heave under compaction
 equipment should be over-excavated a further 0.3m and replaced with approved fill compacted to a dry
 density ratio not less than 100%.

Further advice should be sought where the depth of filling beneath pavements and/or structures exceeds that noted above, or where filling is required to support major structures.

Any waste soils being removed from the site must be classified in accordance with current regulatory authority requirements to enable appropriate disposal to an appropriately licensed landfill facility. Further advice should be sought from a specialist environmental consultant if required.

5.6.4 Filling

Where filing is required, place in horizontal layers not more than 0.3m loose thickness over prepared subgrade and compact to a dry density ratio not less than 95% Standard beneath pavements and 98% Standard beneath structures. The moisture content during compaction should be maintained at $\pm 2\%$ of Standard Optimum. Compact the upper 150mm of subgrade to a dry density ratio not less than 100% Standard.

Filling within 1.5m of the rear of retaining walls should be compacted using lightweight equipment (e.g. handoperated plate compactor or ride-on compactor not more than 3 tonnes static weight) in order to limit compaction-induced lateral pressures. The layer thickness should be reduced to 0.2m maximum loose thickness.

Any soils to be imported onto the site for the purpose of back-filling and re-instatement of excavated areas should be free of contamination and deleterious material, and should include appropriate validation

documentation in accordance with current regulatory authority requirements which confirms its suitability for the proposed land use. Further advice should be sought from a specialist environmental consultant if required.

5.6.5 Batter Slopes

Recommended maximum slopes for permanent and temporary batters are presented in Table 5 below:

 Unit
 Maximum Batter Slope (H : V)

 Permanent
 Temporary

 Fill
 2.5 : 1
 1.5 : 1

 Alluvial soils
 2 : 1
 1.5 : 1

Table 5 - Recommended Maximum Batter Slopes

5.7 Foundations

Bulk excavation is likely to expose variable strength alluvial soils and shale bedrock at lower basement level. Suitable footings are therefore likely to comprise a slab on ground for the basement area with piling required to support internal columns and walls. All piles should extend to and be founded on similar strength shale bedrock to avoid differential movements due to these variable founding conditions.

Construction joints should be considered to accommodate differential settlements that may occur as a result of variable ground conditions. Slab design should also incorporate connecting dowels or shear keys at construction or expansion joints between adjoining slabs to minimise differential settlements between slab panels.

Edge beams for slab, pad footings and rock-socketed piles may be designed for the parameters in Table 6.

Founding	Maximum Allowable (Serviceability) Values (kPa)			Ultimate Strength Limit State Values* (kPa)		
Stratum	End Bearing	Shaft Friction – Compression	Shaft Friction – Tension	End Bearing	Shaft Friction - Compression	Shaft Friction - Tension
Class 4 Shale	1,000	100	60	3,000	150	100
Class 3 Shale	2,000	200	125	10,000	350	200
Class 2 Shale	4,500	450	300	30,000	600	400

Table 6 - Footing Design Parameters

Although current observations indicate that groundwater levels are expected to be slightly below basement level, it would be prudent to consider the potential for future elevated groundwater levels occurring as a result of seasonal variations, leaking services or inundation. It is therefore recommended that waterproofing of the basement floor slab and nominally 1m up the walls, is provided, and should be designed to withstand hydrostatic pressures. In the absence of long-term monitoring of groundwater levels to establish an appropriate design water level, it is suggested that a groundwater level nominally 1.5m above the level measured in the piezometers be considered (i.e. RL 5.2m AHD).

Options for piles include:

Driven piles. Driven piles are not considered suitable because environmental factors including noise and vibration are likely to be unacceptable for the adjacent developments.

^{*} To be used with Geotechnical Strength Reduction Factor of 0.75

Bored Piles. Piezometers indicate the potential presence of groundwater at this site. Bored piles are unlikely to be suitable due to the likelihood of collapse of the sidewalls, or significant dewatering requirements.

Continuous Flight Auger (CFA) Piles. CFA piles are constructed by drilling a hollow stemmed continuous flight auger to the required founding depth. Concrete is then injected under pressure through the auger stem as the auger is extracted from the soil. The reinforcing cage is then inserted upon completion of the concreting process. Pile diameters vary from 300mm to 1200mm. Drilled spoil is produced during CFA piling, and must subsequently be removed from site. CFA piles are considered non-displacement piles as defined in AS2159. Examples of CFA piles are Frankipile "Atlas" type piles, or Vibropile "Omega" type piles.

Groundwater may be expected within bored pile holes and dewatering by down-hole pump may be required. CFA piles may be more suitable for the high groundwater conditions. However, the piling rig would need to be powerful enough to penetrate through the Class 3 or Class 2 shale rock, if required for bearing capacity.

An experienced geotechnical engineer should review footing designs to check that the recommendations of the geotechnical report have been included, and should assess footing excavations to confirm the design assumptions.

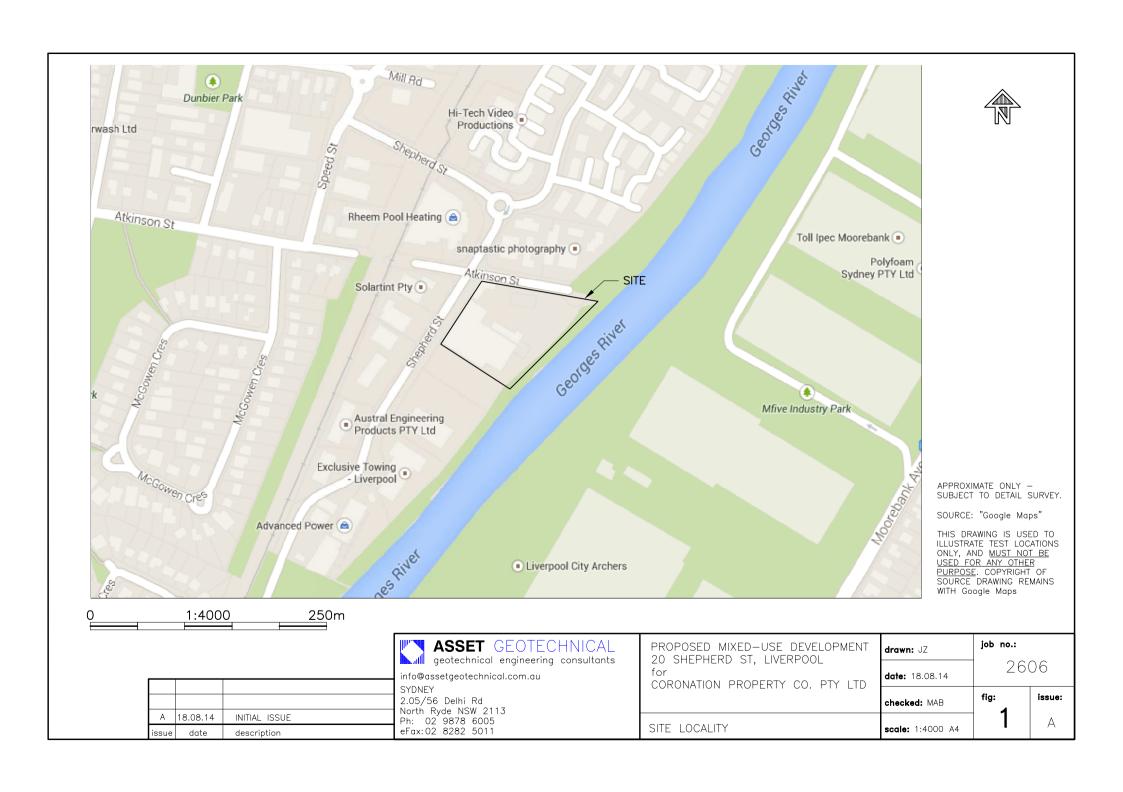
6. LIMITATIONS

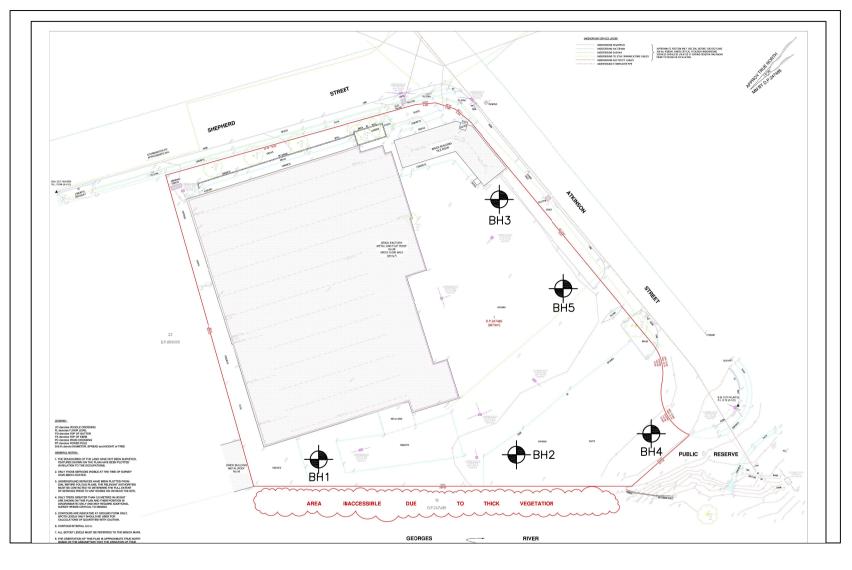
In addition to the limitations inherent in site investigations (refer to the attached Information Sheets), it must be pointed out that the recommendations in this report are based on assessed subsurface conditions from limited investigations. In order to confirm the assessed soil and rock properties in this report, further investigation would be required such as coring and strength testing of rock, and should be carried out if the scale of the development warrants, or if any of the properties are critical to the design, construction or performance of the development.

It is recommended that a qualified and experienced Geotechnical Engineer be engaged to provide further input and review during the design development; including site visits during construction to verify the site conditions and provide advice where conditions vary from those assumed in this report. Development of an appropriate inspection and testing plan should be carried out in consultation with the Geotechnical Engineer.

This report may have included geotechnical recommendations for design and construction of temporary works (e.g. temporary batter slopes or temporary shoring of excavations). Such temporary works are expected to perform adequately for a relatively short period of time only, which could range from a few days (for temporary batter slopes) up to six months (for temporary shoring). This time period depends on a range of factors including but not limited to: site geology; groundwater conditions; weather conditions; design criteria; and level of care taken during construction. If there are factors which prevent temporary works from being completed and/or which require temporary works to function for periods longer than originally designed, further advice must be sought from the Geotechnical Engineer and Structural Engineer.

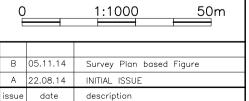
This report and details for the proposed development must be submitted to relevant regulatory authorities that have an interest in the property (e.g. Council) or are responsible for services that may be within or adjacent to the site (e.g. Sydney Water, Sydney Trains, Roads and Maritime Services), for their review prior to commencement of construction.




The document "Important Information about your Geotechnical Report" in Appendix A provides additional information about the uses and limitations of this report.

FIGURES

Figure 1 – Site Locality Figure 2 – Test Locations



APPROXIMATE ONLY - SUBJECT TO DETAIL SURVEY.

SOURCE: "SDG Land Development Solutions"

THIS DRAWING IS USED TO ILLUSTRATE TEST LOCATIONS ONLY, AND MUST NOT BE USED FOR ANY OTHER PURPOSE. COPYRIGHT OF SOURCE DRAWING REMAINS WITH SDG Land Development Solutions

ASSET GEOTECHNICAL geotechnical engineering consultants

info@assetgeotechnical.com.au SYDNEY 2.05/56 Delhi Rd

2.05/56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 eFax:02 8282 5011

20 SHEPHER		DEVELOPMENT RPOOL
for CORONATION	PROPERTY	CO. PTY LTD

TEST LOCATIONS

drawn: JZ	job no.:	
date: 05.11.14	2606	
checked: MAB	fig:	issue:
scale: 1:1000 A4	2	В

APPENDIX A

Important Information about your Geotechnical Report

Important Information about your Geotechnical Report

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client and Asset Geotechnical Engineering Pty Ltd ("Asset"), for the specific site investigated. The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

The report should not be used if there have been changes to the project, without first consulting with Asset to assess if the report's recommendations are still valid. Asset does not accept responsibility for problems that occur due to project changes if they are not consulted.

RELIANCE ON DATA

Asset has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. Asset has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, Asset will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Asset.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies.

The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

Therefore, the recommendations in the report can only be regarded as preliminary. Asset should be retained during the project implementation to assess if the report's recommendations are valid and whether or not changes should be considered as the project proceeds.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events

such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. Asset should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Asset be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. Asset assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of Asset or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

DATA MUST NOT BE SEPARATED FROM THE REPORT

The report as a whole presents the site assessment, and must not be copied in part or altered in any way.

Logs, figures, drawings, test results etc. included in our reports are developed by professionals based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These data should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

PARTIAL USE OF REPORT

Where the recommendations of the report are only partially followed, there may be significant implications for the project and could lead to problems. Consult Asset if you are not intending to follow all of the report recommendations, to assess what the implications could be. Asset does not accept responsibility for problems that develop where the report recommendations have only been partially followed if they have not been consulted.

OTHER LIMITATIONS

Asset will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.

APPENDIX B

Soil & Rock Explanation Sheets Borehole Logs

Soil and Rock Explanation Sheets (1 of 2)

LOG ABBREVIATIONS AND NOTES

METH boreh	OD ole logs	exca	ation logs
AS	auger screw *	NE	natural excavation
AD	auger drill *	HE	hand excavation
RR	roller / tricone	BH	backhoe bucket
W	washbore	EX	excavator bucket
CT	cable tool	DZ	dozer blade
HA	hand auger	R	ripper tooth
D	diatube		
В	blade / blank bit		

T TC-bit
* bit shown by suffix e.g. ADV

coring NMLC, NQ, PQ, HQ

V-bit

SUPPORT borehole logs

excavation logs shoring mud S B M C NQ casing benched NQ rods

CORE-LIFT

	casing installed
Н	barrel withdrawn

NOTES, SAMPLES, TESTS

disturbed bulk disturbed

B U50 thin-walled sample, 50mm diameter hand penetrometer (kPa)

ΗP SV shear vane test (kPa)

DCP dynamic cone penetrometer (blows per 100mm penetration)

standard penetration test SPT value (blows per 300mm) SPT denotes sample taken SPT with solid cone refusal of DCP or SPT Nc

USCS SYMBOLS

Well graded gravels and gravel-sand mixtures, little or no fines. GP Poorly graded gravels and gravel-sand mixtures, little or no

GM Silty gravels, gravel-sand-silt mixtures.

Clayey gravels, gravel-sand-clay mixtures

Well graded sands and gravelly sands, little or no fines. Poorly graded sands and gravelly sands, little or no fines. Silty sand, sand-silt mixtures. SW SP

SM

Clayey sand, sand-clay mixtures. MI

Inorganic silts of low plasticity, very fine sands, rock flour, silty

or clayey fine sands.

CL Inorganic clays of low to medium plasticity, gravelly clays, sandy

clays, silty clays.

Organic silts and organic silty clays of low plasticity.

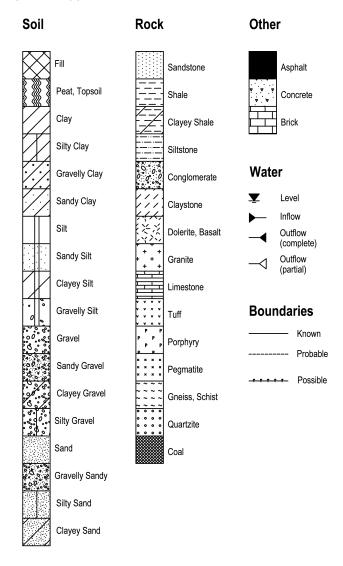
Inorganic silts of high plasticity. OL

МН CH OH

Inorganic clays of high plasticity.
Organic clays of medium to high plasticity.

Peat muck and other highly organic soils.

MOISTURE CONDITION


dry Μ moist W wet Wp plastic limit . liquid limit

CONSISTENCY DENSITY INDEX

CONT	JIO I ENO I	DLING	III IIIDEA
VS	very soft	VL	very loose
S	soft	L	loose
F	firm	MD	medium dense
St	stiff	D	dense
VSt	very stiff	VD	very dense
ш	hard		•

friable

GRAPHIC LOG

WEAI	HERING	SIRE	NGIH
XW	extremely weathered	EL	extremely low
HW	highly weathered	VL	very low
MW	moderately weathered	L	low
SW	slightly weathered	M	medium
FR	fresh	Н	high
		VH	very high
		EH	extremely high

<u>sum of intact core pieces > 2 x diameter</u> x 100 total length of section being evaluated

DEFECTS

type		coati	ng
ĴŤ	joint	cl	clean
PT	parting	st	stained
SZ	shear zone	ve	veneer
SM	seam	co	coating
shape		rougl	hness

planar polished pΙ cu curved slickensided un undulating sm smooth st stepped ro rough irregular very rough

inclination

measured above axis and perpendicular to core

Soil and Rock Explanation Sheets (2 of 2)

AS1726-1993

Soils and rock are described in the following terms, which are broadly in accordance with AS1726-1993.

SOIL

MOISTURE CONDITION

Description

Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through the hand. Feels cool and darkened in colour. Cohesive soils can be moulded. Moist

Granular soils tend to cohere.

As for moist, but with free water forming on hands when handled. Moisture content of cohesive soils may also be described in relation to plastic limit (W_P) or liquid limit (W_L) [>> much greater than, > greater than, < less than, << much less than].

CONSISTENCY OF COHESIVE SOILS

Term	Su (kPa)	Term	Su (kPa)
Very soft	< 12	Very Stiff	100 - 200
Soft	12 – 25	Hard	> 200
Firm	25 - 50	Friable	_
Stiff	50 – 100		

DENSITY OF GRANULAR SOILS

Term	Density Index(%)	Term	Density Index (%)
Very Loose	< 15	Dense	65 – 85
Loose	15 – 35	Very Dense	>85
Medium Dense	35 – 65	-	

PARTICLE SIZE

Name Boulders Cobbles	Subdivision	Size (mm) > 200 63 - 200
Gravel	coarse medium fine	20 - 63 6 - 20 2.36 - 6
Sand	coarse medium fine	0.6 - 2.36 $0.2 - 0.6$ $0.075 - 0.2$
Silt & Clav	11110	< 0.075

MINOR COMPONENTS wien by Mess

rerm	Proportion by was	88
	coarse grained	fine grained
Trace	< 5%	< 15%

Some 5 - 2% 15 - 30%

SOIL ZONING

Layers Continuous exposures.

enses Discontinuous layers of lenticular shape. **Pockets** Irregular inclusions of different material.

SOIL CEMENTING

Easily broken up by hand.

Moderately Effort is required to break up the soil by hand.

USCS SYMBOLS

Symbol	Description
GW	Well graded gravels and gravel-sand mixtures, little or no fines.
GP	Poorly graded gravels and gravel-sand mixtures, little or no fines.
GM	Silty gravels, gravel-sand-silt mixtures.
GC	Clayey gravels, gravel-sand-clay mixtures.
SW	Well graded sands and gravelly sands, little or no fines.
SP	Poorly graded sands and gravelly sands, little or no fines.
SM	Silty sand, sand-silt mixtures.
SC	Clayey sand, sand-clay mixtures.
ML	Inorganic silts of low plasticity, very fine sands, rock flour, silty or clayey fine sands.
CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.
OL	Organic silts and organic silty clays of low plasticity.
MH	Inorganic silts of high plasticity.
CH	Inorganic clays of high plasticity.
OH	Organic clays of medium to high plasticity.
PT	Peat muck and other highly organic soils.

ROCK

SEDIMENTARY ROCK TYPE DEFINITIONS

Definition (more than 50% of rock consists of)

Rock Type Conglomerate ... gravel sized (>2mm) fragments Sandstone ... sand sized (0.06 to 2mm) grains.

... silt sized (<0.06mm) particles, rock is not laminated. ... clay, rock is not laminated. Siltstone

Claystone

Shale ... silt or clay sized particles, rock is laminated.

LAYERING

Description Term Massive No layering apparent. Layering just visible. Little effect on properties. Layering distinct. Rock breaks more easily parallel Poorly Developed Well Developed

STRUCTURE

Term	Spacing (mm)	Term	Spacing
Thinly laminated	<6	Medium bedded	200 – 600
Laminated	6 – 20	Thickly bedded	600 - 2,000
Very thinly bedded	20 - 60	Very thickly bedded	> 2,000
Thinly bedded	60 - 200	, ,	

STRENGTH

Term	Is50 (MPa)	Term	Is50 (MPa)
Extremely Low	< 0.03	High	1.0 - 3.0
Very low	0.03 - 0.1	Very High	3.0 - 10.0
Low	0.1 - 0.3	Extremely High	>10.0
Medium	0.3 - 1.0		

NOTE: Is50 = Point Load Strength Index

WEATHERING

Term Description

Residual Soil Soil derived from weathering of rock; the mass structure and substance fabric are no longer evident. Extremely Rock is weathered to the extent that it has soil properties (either disintegrates or can be remoulded). Fabric of original rock is still visible.

Highly Rock strength usually highly changed by weathering; rock may be highly discoloured.

Moderately

Rock strength usually moderately changed by weathering; rock may be moderately discoloured.
Rock is slightly discoloured but shows little or no change of Slightly

strength from fresh rock

Rock shows no signs of decomposition or staining. Fresh

DEFECT DESCRIPTION

Seam

A surface or crack across which the rock has little or no

tensile strength. May be open or closed.

A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering/ Parting

bedding. May be open or closed.

Zone of rock substance with roughly parallel, near

Sheared Zone

planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Seam with deposited soil (infill), extremely weathered insitu rock (XW), or disoriented usually angular fragments of the host rock (crushed).

Shape Planar Consistent orientation. Curved Gradual change in orientation. Wavy surface. Undulating Stepped One or more well defined steps. Irregular Many sharp changes in orientation.

Roughness

Shiny smooth surface. Polished

Slickensided Grooved or striated surface, usually polished. Smooth Smooth to touch. Few or no surface irregularities. Rough Many small surface irregularities (amplitude generally <1mm). Feels like fine to coarse sandpaper. Very Rough Many large surface irregularities, amplitude generally

>1mm. Feels like very coarse sandpaper.

Coating

No visible coating or discolouring. Clean

No visible coating but surfaces are discolored. Veneer A visible coating of soil or mineral, too thin to measure;

may be patchy

Visible coating ≤1mm thick. Thicker soil material de-Coating

scribed as seam

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1

sheet: 1 of 5

job no.: 2606

Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 14.8.2014 started: principal: finished: 14.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m approx diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc additional observations samples depth metres notes water kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Asphalt ADT Sandy GRAVEL, fine to coarse grained, dark grey, 0.2 GW D VL Fill 10.0 well graded D 0.5 GW Clayey Sandy GRAVEL, fine to coarse grained, mottled brown and dark grey, trace of sandstone fragments, trace of ballast materials D 1.0 SPT 2,2,1 N*=3 9.0 SAND, fine to coarse grained, brown, well graded _8.5 D 2.0 8.0 D Sandy CLAY, low to medium plasticity, brown mottled grey, fine grained sand 2.4 CL >Wp 5 × 200 SPT 7.5 3.0 7.0 D 3.5 SAND, fine to medium grained, brown, poorly Alluvial D 4.0 SPT 2,3,3 N*=6 D 4.5 5.5 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1

sheet: 2 of 5

job no.: 2606

started:

14.8.2014

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 14.8.2014 Proposed Mixed-Use Develpment JΖ project: logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m approx. diameter: 100mm inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition tests, etc samples, additional observations depth metres notes water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. SP SAND, fine to medium grained, brown, poorly graded (continued) ADT 5.0 D 5.5 4,4,6 N*=10 D 6.0 D 6.5 D 7.0 12.00pm W SPT 2,2,2 N*=4 3.0 7.5 WB _2.5 8.0 2.0 8.3 CL Sandy CLAY, low plasticity, grey mottled brown, with iron staining 8.5 × 100 3,6,10 N*=16 VSt × 200 9.0 _1.0 9.5 0.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH1 BH no:

3 of 5 sheet:

job no.: 2606

Borehole Log

client: Coronation Property Co. Pty Ltd started: 14.8.2014 principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: JΖ location: 20 Shepherd Street, Liverpool MAR checked:

	tion:			0.511	epherd	Street	, Liver	0001			hecked:	
	pme				-mount						RL surfac	
	nete			.00m	m			0° bearing: E: N:		(datum:	AHD
drilli	ing ir	nforr	nation			mate	rial inf	ormation				
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 p hand 200 p penetro- 300 p meter	structure and additional observations
WB	Σ				_		CL	Sandy CLAY, low plasticity, grey mottled brown, with iron staining (continued)	>Wp	VSt		
			R	_0.0				Borehole No: BH1 continued as cored hole from 10.2m				TC Refusal
								10.2111				
					<u>1</u> 0.5							
					_							
					-							
				0.5	-							
					<u>1</u> 1.0							
				-1.0	L							
					L							
					<u>1</u> 1.5							
					_							
				1.5	_							
				_ 1.3								
					<u>1</u> 2.0							
					_							
					-							
				2.0	-							
					12.5							
					12.0							
				2.5	L							
					_							
					<u>1</u> 3.0							
					-							
				3.0	_							
				_ 5.0								
					<u>1</u> 3.5							
					L							
					-							
				3.5	-							
					L							
				4.0	L							
					L							
					<u>1</u> 4.5							
					-							
				4.5								
				<i>_</i>								
					15.0			TERMS AND SYMBOLS USED				Borehole Log - Revision

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1
sheet: 4 of 5
job no.: 2606

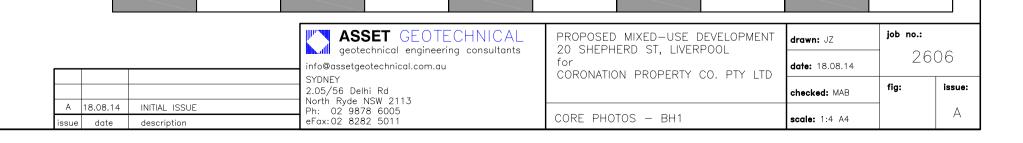
Cored Borehole Log

client: Coronation Property Co. Pty Ltd 14.8.2014 started: principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 0.3 RL 20 200 200 2000 ┸┩╀┪┖ 0.5 10.0 Continued from non-cored borehole from 10.2m SHALE, grey, well developed bedding, thinly laminated 0.0 SW 10.5 -0.5 D=0.4 JT 10° pl ro cl <u>1</u>1.0 JT 45° cu ro cl -Caused by vibration from drilling rig <u>1</u>1.5 _-1.5 D = 0.012.0 A=0.6 CZ ro cl -2.0 BP 0-5° pl ro co/cl 12.5 -25 13.0 A=0.62 JT 45° pl ro cl JT 30° pl ro cl JT 45° pl ro cl -3.0 <u>1</u>3.5 2606 BOREHOLE LOG.GPJ 5/11/14 D = 0.3<u>1</u>4.0 A=0.8 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH1 sheet: 5 of 5

2606


job no.:

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd started: 14.8.2014 principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing core recoven graphic log support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 9 - 9 RL 200 200 200 200 200 ╗┪┪┪┪ SHALE, grey, well developed bedding, thinly laminated (continued) -JT 80° pl ro cl 14 75 BH1 terminated at 14.75m <u>1</u>5.0 -5.0 15.5 -5.5 16.0 <u>1</u>6.5 -6.5 <u>1</u>7.0 -7.0 17.5 18.0 <u>1</u>8.5 <u>1</u>9.0 -9.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH2

job no.: 2606

1 of 5

sheet:

Borehole Log

BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: finished: 15.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.9 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc samples additional observations depth metres notes water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. Asphalt ADT Sandy GRAVEL, fine to coarse grained, dark grey mottled pale grey, trace of ballast materials 0.2 GW M L Fill 9.5 0.5 Sandy CLAY, low plasticity, brown mottled grey, with fine to medium grained sand CLAY, high plasticity, mottled dark grey and brown, trace of fine to medium grained gravel, trace of fine to medium grained sand 0.8 >>Wp 9.0 SPT × 210 4,6,6 N*=12 1.5 _8.0 2.0 7.5 2.5 Σ × 100 SPT 2,3,3 N*=6 7.0 3.0 6.5 3.5 Sandy Silty CLAY, low plasticity, dark grey, fine grained sand, trace of fine grained gravel CL Alluvial 20 SPT 0 N*=0 5.5 4.5 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no: 2 of 5 sheet:

2606

job no.:

Borehole Log

client: 15.8.2014 Coronation Property Co. Pty Ltd started: principal: finished: 15.8.2014 project: Proposed Mixed-Use Develpment logged: JΖ

	tion	:		<u>20</u> Sh	epherd	Street	t, Liver	pool				hecked	: MAB
	ipme		Т	rack	-mount	ted Dri	lling Ri	g			F	RL surfa	ce: 9.9 m appro
	nete			L00m				0° bearing: E:	N:			datum:	AHD
drill	ing i	nfor	mation					ormation					
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material descripti soil type: plasticity or particle of colour, secondary and minor	characteristics,	moisture condition	consistency/ density index	100 — hand 200 — penetro- 300 — meter 400 — meter	structure and additional observations
WB	M				-		CL	Sandy Silty CLAY, low plasticity, da grained sand, trace of fine grained (continued)		>Wp	VS		
				_4.5	5.3 - 5.5		SW	SAND, fine to coarse grained, bro	wn, well graded	М	L		
			SPT 3,3,5 N*=8	_4.0	_ _ _ _								
					6.0 _ _								
		meter▼		_3.5							MD		
		rved in Piezor		_3.0	_ _ 								*Smell of fuel on soils @7m
		Water Level Observed in Piezometer	SPT 6,7,8 N*=15	2.5	_ _ _ _ 								*Smell of fuel on soils @7m due to possible leak from tw underground fuel tanks in th vicinity of BH2
				_2.0									
					8.3		CL	Sandy CLAY, low plasticity, mottle	d dark grov and	>Wp	St		
			SPT	_1.5	8.5 8.5		CL	brown, fine to medium grained sa	a dark grey dilu	-vvb	Sι	× 190	
			4,4,2 N*=6	_1.0	9.0								
				_0.5	_ _ _ _ _ 								
				_0.0	_ _ _						S		
				Γ.	10.0								

SYDNEY SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no:

3 of 5

2606 job no.:

sheet:

Borehole Log

SPT 3,2,2 N*=4

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: 15.8.2014 finished: Proposed Mixed-Use Develpment JΖ project: logged: 20 Shepherd Street, Liverpool location: checked: MAB Track-mounted Drilling Rig equipment: RL surface: 9.9 m approx diameter: 100mm inclination: -90° bearing: datum: AHD drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method depth metres water kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Sandy CLAY, low plasticity, mottled dark grey and brown, fine to medium grained sand (continued) CL WB 20

		1 10 5	1////:				
		<u>1</u> 0.5	1//				_
			K ZX:::1				
			V/1 /				
		l ⊢	1/////				
			Y ZX 551			1 1 1 1	
		I –	$V/\lambda \rightarrow \lambda$			1 1 1 1	
			レノナンコ				
			1///			1 1 1 1	
		I – –	I Z/1001				
		10	Y -⁄24 ∵ 2			1 1 1 1	
		1.0	VZ I Z I				
		<u>1</u> 1.0					
		<u> </u>	Y /#::J				
			V				
			V/1/:1				
		I –	1/.28: :1			1 1 1 1	
			I /./·::1				
		I ⊢	Y /X·X				
1 1	1 1	1 1	ド /オアコ		1	1 : : : : :	l .
I I		1 1	VZK:SI				
		I ⊢	$I/A \cdot A$				
			ドノオー・オ				
		1.5	V/x:/:1				
						1 1 1 1	
		<u>1</u> 1.5					
		11.3				1 1 1 1	_
			K/A.Zi				
			V/1/1				
		l ⊢	1/21:31				
						1 1 1 1	
			1/A.X				
		I –	Y /\/::			1 1 1 1	
			V/X: 1			1 1 1 1	
		l ∟	V. Z [·]				
			[//://			1 1 1 1	
		2.0	Y ZXZ:				
		⊢-2.0 ⊢	$V/X \rightarrow I$			1 1 1 1	
			L/FE ST				
1 1	1 1	12.0	レンドニオ		1		l .
			T	Borehole No: BH2 continued as cored hole from 12m		T : : : :	TC Refusal
1 1		1 1		porenoie No: BHZ continued as cored hole from			I C VEIUSUI
				112m			
I I		1 1		1-2			
1 1	1 1	1 1			1	1:::::	l .
1 1	1 1	. ⊢			1		l .
		1 1				1 : : : :	
1 1	1 1	1 1			1		l .
I I							
		1 25 1					
		2.5					
I I		1 1 .				1 1 1 1	
		<u>1</u> 2.5					
1 1	1 1	I +=5			1		I -
1 1	1 1	1 1			1	1	l .
		1 1					
I I		1					
I I		1 1					
		I ⊢					
	1 1	1 1	1	I .	1 1		I .
						1 1 1 1	

- 1				<u>1</u> 2.5		1					
			L	14.5		I			1		
- 1						1					_
- 1						1					
- 1						1				: : : :	
- 1			- +	_		1				1 1 1 1	
- 1						1					
- 1						1					
- 1						1					
- 1			Г			1					
- 1						1					
- 1						1				5 5 5 5	
- 1			- H	_		1					
- 1						1					
- 1						1					
- 1			3.0			1					
- 1		1		_		1					
- 1				400		1					
- 1				13.0		1					
- 1			_ ⊢	13.0		1					_
- 1						1				4 4 4 4	
- 1						1					
- 1						1					
- 1				_		1					
- 1						1					
- 1						1					
- 1						1					
- 1				_		1					
- 1						1					
- 1						1					
- 1				_		1					
- 1						1					
- 1						1					
- 1			-3.5			1					
- 1		1		_		1				5 5 5 5	
- 1						1					
- 1				13.5		1				: : : :	
- 1				13.3		1					_
- 1						1					
- 1						1					
- 1						1					
- 1		1	- F	_	1	1		1			
						I			1		
- 1		1			1	1		1			
				_		I			1		
- 1		1			1	1		1			
- 1						1					
- 1						1					
			-	_		I			1		
- 1						1					
						I			1		
- 1		I L	4.0		1	1		1			
		1 [_		I			1		
- 1		1		440	1	1		1			
				14.0		I			1	1 1 1 1	
			-			I			1	1 1 1 1	_
- 1		1			1	1		1			
- 1		1			1	1		1			
						I			1		
- 1		1		_	1	1		1		: : : :	
- 1	1	1				1		1			

2606 BOREHOLE LOG.GPJ 5/11/14

REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

Borehole Log - Revision 10

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH2 sheet: 4 of 5 job no.: 2606

Cored Borehole Log

rock substance description Solution To the process of the proces	f I C	started: finished: logged: checked: RL surface:	
Power Powe		datum: rock mass	AHD
Part		defect	derects
12.0 Continued from non-cored borehole from 12m SW	strength MPa	spacing mm	defect description type, inclination, thickness, shape, roughness, coating specific get
-25 12.5 -3.0 -3.			
	D=0.8 A=0.86 D=0.54 A=0.77 D=0.81 A=0.84		— JT 45° pl sm cl — JT 45° pl sm cl — JT 25° pl sm cl — — — — — — — — — — — — —
	D=0.53 A=0.79		
		- : : : : : !	

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no: 5 of 5 sheet: job no.: 2606

Cored Borehole Log

client: Coronation Property Co. Pty Ltd started: 15.8.2014 15.8.2014 principal: finished: project: Proposed Mixed-Use Develpment logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.9 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing core recoven graphic log support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 9 - 9 RL 200 200 200 200 200 ╗┪┪┪┪ SHALE, dark grey, well developed bedding, thinly laminated NMLC (continued) BH2 terminated at 16.74m 16.74 -7.0 17.0 -7.5 17.5 18.0 _-8.5 <u>1</u>8.5 -9.0 <u>1</u>9.0 -9.5 19.5 -10.0 20.0 <u>2</u>0.5 <u>2</u>1.0

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 **BH no: BH3** sheet: 1 of 3

job no.:

2606

Borehole Log

client:Coronation Property Co. Pty Ltdstarted:15.8.2014principal:finished:19.8.2014project:Proposed Mixed-Use Develpmentlogged:JZlocation:20 Shepherd Street, Liverpoolchecked:MAB

	ject: ition					lixed-U: d Street		elpment nool			logged: checked	JZ : MAB
		ent:				nted Dri	lling Ri	g			RL surfa	
	nete			L00m	m			00° bearing: E: N:		(datum:	AHD
Irill	ing i	infor	mation			mate	rial in	formation		I	1	Т
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 hand 200 oppositional 300 oppositional 400 meter	structure and additional observations
ADI	O			_10.0				Asphalt				Asphalt
4					0.5 		CL	Sandy Gravelly CLAY, low plasticity, mottled dark grey/red brown/white, fine to coarse grained sand, fine to coaorse grained gravel, with sandstone fragments	~Wp	S		Fill
				_9.5	0.	5	SW	SAND, fine to coarse grained, brown, well graded	M	MD		
			SPT 1,2,1 N*=3	9.0	 - - -	1	CL	Sandy CLAY, low to medium plasticity, brown mottled dark grey, with terracotta fragments from 1.5 to 1.7m	>Wp	S		
				_8.5	1.5 - - -							
				_8.0	<u>2</u> .0							
	Σ		SPT 2,6,8 N*=14	_7.5	2.5 - <u>2.</u>	6	СН	CLAY, medium to high plasticity, mottled red-brown/grey/brown, with fine to medium grained sand, with ironstaining		VSt	×	Alluvial 400
				_7.0	3.0							
				6.5	3.5							
			SPT 7,9,10 N*=19	_6.0	4.0						× 31	0 0
				_5.5	4.5 _							
EF	ER TO	O EXP	LANATIO	N SHE	5.0 ETS FOR	DESCRIP	TION OF	TERMS AND SYMBOLS USED				Borehole Log - Revision

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH3

sheet: 2 of 3

2606

job no.:

Borehole Log

 client:
 Coronation Property Co. Pty Ltd
 started:
 15.8.2014

 principal:
 finished:
 19.8.2014

 project:
 Proposed Mixed-Use Develpment
 logged:
 JZ

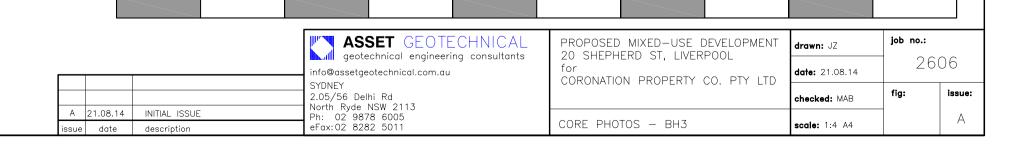
 location:
 20 Shepherd Street, Liverpool
 checked:
 MAB

 equipment:
 Track-mounted Drilling Rig
 RL surface:
 10.1 m approx

 diameter:
 100mm inclination: -90° hearing: --- F:
 N:
 datum:
 AHD

				Street,					checked	
quipment:				ted Drill					RL surfa	
liameter:		L00m	rn			0° bearing: E: N:			datum:	AHD
Irilling info	rmation			mate	rial int	ormation	_			
method support water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 hand 200 de penetro- 400 meter	structure and additional observations
MM ≥		_5.0	_		СН	CLAY, medium to high plasticity, mottled red-brown/grey/brown, with fine to medium grained sand, with ironstaining (continued)	>Wp	St		
	SPT 3,3,8 N*=11	_4.5	<u>5</u> .5 - -						× 150	
		_4.0								
Piezometer		_3.5								
Water Level Observed in Piezometer ▼	SPT	_3.0			SP	Clayey SAND, fine to medium grained, brown, poorly graded	M	MD		
Water L	6,6,10 N*=16	2.5	_ 							
		2.0								
		_1.5	_ _ _ 							
		_1.0	 							
		_0.5	_ _ 							
-						Borehole No: BH3 continued as cored hole from 9.7m				TC Refusal

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011


BH no: BH3 sheet: 3 of 3 job no.: 2606

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: finished: 19.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 water depth 0.3 RL 20 200 200 2000 Observed 9.5 0.5 Continued from non-cored borehole from 9.7m SHALE, dark grey, well developed bedding, thinly laminated D=0.4 10.0 A=1.2 0.0 Fractured Zone, sm, cl 10.5 -0.5 D=0.5 <u>1</u>1.0 A=0.8 JT 10° cu sm cl 0-5° pl sm cl Clay SM, sm co <u>1</u>1.5 JT 45° pl sm cl D=0.2 12.0 -2.0 12.5 BH3 terminated at 12.83m 12.83 <u>1</u>3.0 <u>1</u>3.5 _-3.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 **BH no: BH4** sheet: 1 of 4

19.8.2014

job no.: 2606

started:

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc additional observations samples method depth metres notes kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Clayey Sandy GRAVEL, fine to coarse grained, grey mottled brown, well graded ADT Observed None Sandy Gravelly CLAY, low to medium plasticity, mottled grey and brown, fine to coarse grained sand, fine to medium grained gravel 0.4CL >>Wp D 0.5 9.0 × 80 D SPT 0 N*=0 St 1.5 × 150 Clayey SAND, fine to coarse grained, dark grey, with fine to medium grained gravel, well graded SC D Sandy CLAY, high plasticity, dark grey mottled brown , fine to medium grained sand, with fine grained gravel *Possible coal tar contamination* >>Wp СН VSt × 120 D 2.5 VSt Σ × 300 SPT 4,5,5 N*=10 D 3.0 6.5 3.5 6.0 4.0 SPT 1,3,6 N*=9 4.2 Clayey SAND, fine to coarse grained, brown mottled red-brown, with ironstaining 4.5 5.0 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH4 BH no:

sheet: 2 of 4

2606 job no.:

19.8.2014

Borehole Log

client:

Coronation Property Co. Pty Ltd started: principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition samples, tests, etc additional observations method depth metres notes kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. Clayey SAND, fine to coarse grained, brown mottled red-brown, with ironstaining (continued) SC WB None Observed 5.5 4.0 × 290 8,5,6 N*=11 5.7 CLAY, high plasticity, dark brown, trace of fine >>Wp VSt grained sand 6.0 6.5 SAND, fine to coarse grained, pale brown, well graded, with fine grained gravel Alluvial SW SPT 3,4,4 N*=8 <u>7</u>.5 2.0 8.0 1.5 8.5 1.0 SPT 2,3,5 N*=8 D 9.0 9.5 0.0 D REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

SYDNEY SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH4 BH no: sheet: 3 of 4

19.8.2014

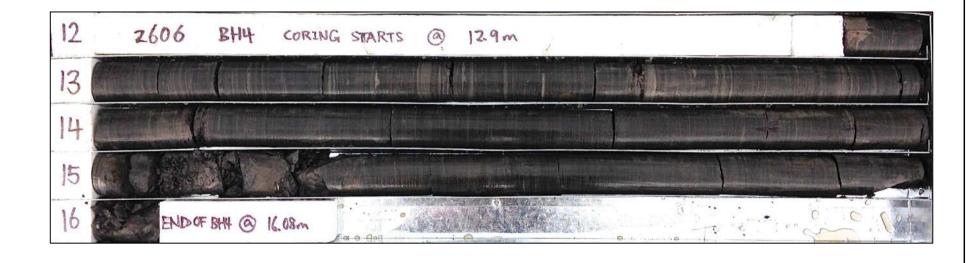
2606 job no.:

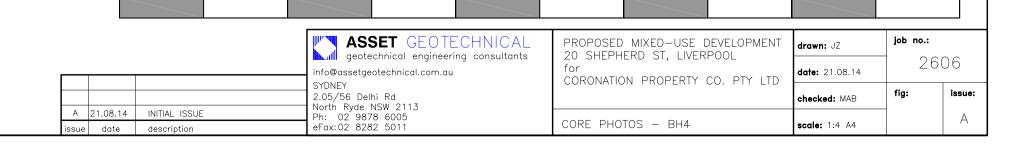
Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

Coronation Property Co. Pty Ltd started: principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx. diameter: 100mm inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method depth metres kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. SP SAND, fine to medium grained, grey, poorly graded WB None Observed SPT 2,3,7 N*=10 10.5 -1.0 11.0 Sandy CLAY, low plasticity, dark grey, with wood 11.5 12.0 _-2.5 12.5 -3.0 Borehole No: BH4 continued as cored hole from TC Refusal 13.0 -3.5 13.5 -4.0 <u>1</u>4.0 14.5 -5.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10


SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011


BH no: BH4 sheet: 4 of 4 job no.: 2606

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 19.8.2014 started: principal: finished: 20.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 water depth 0.3 RL 20 200 200 2000 Observed 13.0^{12.9} SHALE, dark grey, well developed bedding, thinly laminated -3.5 13.5 -4.0 Clay SM, sm cl D=0.1 A=0.6 <u>1</u>4.0 Clay SM, sm cl BP 0-5° pl sm cl 14.5 D=0.1 A=1.23 <u>1</u>5.0 -5.5 - Crushed Zone, sm cl Fractured Zone, sm cl 15.5 -6.0 D=0.7 JT 15° cu sm cl A=0.7 16.0 BH4 terminated at 16.08m <u>1</u>6.5 _-7.5 <u>1</u>7.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

1 of 4

job no.: 2606

sheet:

Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

 client:
 Coronation Property Co. Pty Ltd
 started:
 20.8.2014

 principal:
 finished:
 20.8.2014

 project:
 Proposed Mixed-Use Develpment
 logged:
 JZ

 location:
 20 Shepherd Street, Liverpool
 checked:
 MAB

 equipment:
 Track-mounted Drilling Rig
 RL surface:
 10.1 m
 approx.

 diameter:
 100mm
 inclination:
 -90° bearing:
 -- E:
 N:
 datum:
 AHD

	tion				epherd						hecked	
-	ipme				mount						RL surfa	• • • • • • • • • • • • • • • • • • • •
	nete			.00m	m			0° bearing: E: N:			datum:	AHD
drill	ing i	nfor	mation		1	mate	rial inf	ormation			I	T
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 mand 200 mage penetro- 400 meter	structure and additional observations
ADT	C	None Observed		_10.0	0.1		SC	Asphalt Clayey Gravelly SAND, fine to coarse grained, mottled brown and grey, well graded	 M	 L		Asphalt Fill -
		None Ob		_9.5	0.5 - -		CL	Gravelly Sandy CLAY, low plasticity, mottled brown/grey/red-brown, fine to coarse grained sand and gravel	~Wp	F		- - - - -
				_9.0	1.0		SC	Clayey SAND, fine to coarse grained, dark grey mottled brown, with fine to medium grained gravel, with ash deposits	M	L	× 100	
				_8.5			SP	SAND, fine to medium grained, brown, poorly graded				Alluvial -
				_8.0	 							- - - -
WB	Σ		SPT 2,3,3 N*=6	_7.5								-
				_7.0								- - -
			D	6.5	3.3 - 3.5 - -		CL	Sandy CLAY, low plasticity, dark grey, with fine grained gravel	>Wp	St		- - -
			D	6.0								- - -
			D	_5.5	4.5 							
			D									
DEE	FD =0) EV5		N C'''	5.0	1/4./	FION: 05	 TERMS AND SYMBOLS USED				Borehole Log - Revision 10

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

sheet: 2 of 4

job no.: 2606

started:

20.8.2014

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. CL Sandy CLAY, low plasticity, dark grey, with fine grained gravel (continued) WB None Observed 5.0 SC Clayey SAND, fine to medium grained, brown D 10,15,15 N*=30 D 6.0 6.5 _3.5 D 7.0 3.0 D MD 2.5 8.0 2.0 8.5 SPT 4,6,8 N*=14 _1.0 9.5 CL Sandy CLAY, low plasticity, brown, with fine grained >Wp 0.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

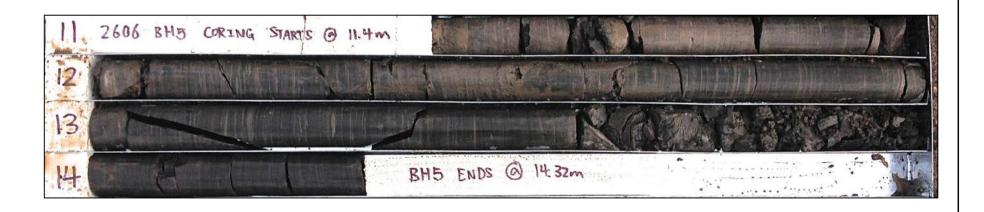
sheet: 3 of 4

job no.: 2606

Borehole Log

client:Coronation Property Co. Pty Ltdstarted:20.8.2014principal:finished:20.8.2014project:Proposed Mixed-Use Develpmentlogged:JZlocation:20 Shepherd Street, Liverpoolchecked:MAB

ocation:	20	Shephero	d Street, Liver	pool	checked:	MAB
quipment:	Tra	ack-moun	ted Drilling Ri	g	RL surface:	10.1 m appr
liameter:		0mm		O° bearing: E: N:	datum:	AHD
rilling infor	mation		material inf	ormation		
support water	notes samples, tests, etc	RL depth metres	graphic log USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	consistency/ density index 100 hand 200 to henetro- 400 meter	structure and additional observations
W M	0	0.0	CL	Sandy CLAY, low plasticity, brown, with fine grained >Wp sand (continued)	MD	
		0.5				
		11.0				
		11.5 		Borehole No: BH5 continued as cored hole from 11.4m	ТС	C Refusal
		12.0				
		12.5				
		13.0 				
		13.5 				
		14.0 -				
		14.5 				
		15.0		TERMS AND SYMBOLS LISED		Rorehole Log - Revision



SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH5 sheet: 4 of 4 job no.: 2606

Cored Borehole Log

clie	nt:			Coron	ation	Property Co. Pty Ltd			started:	20.8.2014
prin	cipal	l:							finished:	20.8.2014
pro	ject:			Propo	sed M	1ixed-Use Develpment			logged:	JZ
loca	tion:	:		20 Sh	epher	d Street, Liverpool			checked:	MAB
equ	ipme	nt:		Track-	moun	nted Drilling Rig			RL surface:	10.1 m
	nete			100m		inclination: -90° bearing: E:	N:		datum:	AHD
drill	ing i	nfor	matic	n	mate	erial information			rock mass	defects
						rook substance description		estimated Is ₍₅₀₎ strength MPa	defect	defect description
					graphic log core recovery	rock substance description			spacing mm	defect description
g	tig #				ic lo	rock type; grain characteristics, colour,	erin	MPa Tal	8	type, inclination, thickness, shape,
method	support & core-lift	water	D.	depth	aph ore r	structure, minor components	weathering	EL 0.03 V 0.3 M M 0.3 M H 1 B W EH 10 D = diametral × A=axial O	RQD %	roughness, coating
Ε	S S		RL	metres	50 0		>	A=ay	2000 2000 2000 2000	specific gene
		None Observed	1.0							
		psq								
		ЭеС		_						
		Š				Continued from non-cored borehole from 11.4m				
NMLC				<u>1</u> 1.5		SHALE, grey, well developed bedding, thinly laminated	RS SW		: :] : : :	
Ź			1.5	_			0,,			Crushed SM, sm cl
				_						SM sm cl
								D=0.16		⇒-SM sm cl
				L						
				<u>1</u> 2.0				O : : A=0.4	5	
			2.0	L				D=0.16		- Clay SM, sm co
				L						JT 45° pl sm cl
				_					5	JT 80° pl sm cl JT 45° pl sm cl
				_					[5]	JT 45° pl sm cl
				<u>1</u> 2.5						Clay SM, sm co
			2.5							Clay SM, sm co
								D=0.67]	→ Clay SM, sm co — JT 25° pl sm cl
								A=0.82		
										— JT 25° pi sm cl
				<u>1</u> 3.0						Ġ
			3.0							JT 70° pl sm cl
										F31 70 prsmci
									: : ; ; ; : :	JT 60° un sm cl
				<u>1</u> 3.5				D=0.43		
			3.5					0 : : A=1.02		H
										- *Possible drilling
										induced fractured
				<u>1</u> 4.0						zone*
			4.0		===				📜 : : :	
				_				D=0.59		_
								D=0.59		
				14.32		BH5 terminated at 14.32m		A=0.62		
				14.5						
			4.5	_						
				L						
				L						
				<u>1</u> 5.0						
			5.0	L						
				L						
				_						
				_						
				<u>1</u> 5.5						
			5.5							
				_						
				L						
				16.0						
DEE	FR TO	EXP	LANAT	ION SHEE	TS FOR	DESCRIPTION OF TERMS AND SYMBOLS USED			C	ored Borehole Log - Revisior

		ASSET GEOTECHNICAL geotechnical engineering consultants	PROPOSED MIXED-USE DEVELOPMENT 20 SHEPHERD ST, LIVERPOOL	drawn: JZ	job no.:	
		info@assetgeotechnical.com.au	for CORONATION PROPERTY CO. PTY LTD	date: 21.08.14	26	506
		SYDNEY 2.05/56 Delhi Rd North Ryde NSW 2113	CONCINCION FINOI ENTI CO. TTT EID	checked: MAB	fig:	issue:
A 21.08.14	INITIAL ISSUE	Ph: 02 9878 6005	CORE PHOTOS - BH5	scale: 1:4 A4		l A

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1

sheet: 1 of 5

job no.: 2606

Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 14.8.2014 started: principal: finished: 14.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m approx diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc additional observations samples depth metres notes water kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Asphalt ADT Sandy GRAVEL, fine to coarse grained, dark grey, 0.2 GW D VL Fill 10.0 well graded D 0.5 GW Clayey Sandy GRAVEL, fine to coarse grained, mottled brown and dark grey, trace of sandstone fragments, trace of ballast materials D 1.0 SPT 2,2,1 N*=3 9.0 SAND, fine to coarse grained, brown, well graded _8.5 D 2.0 8.0 D Sandy CLAY, low to medium plasticity, brown mottled grey, fine grained sand 2.4 CL >Wp 5 × 200 SPT 7.5 3.0 7.0 D 3.5 SAND, fine to medium grained, brown, poorly Alluvial D 4.0 SPT 2,3,3 N*=6 D 4.5 5.5 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1

sheet: 2 of 5

job no.: 2606

started:

14.8.2014

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 14.8.2014 Proposed Mixed-Use Develpment JΖ project: logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m approx. diameter: 100mm inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition tests, etc samples, additional observations depth metres notes water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. SP SAND, fine to medium grained, brown, poorly graded (continued) ADT 5.0 D 5.5 4,4,6 N*=10 D 6.0 D 6.5 D 7.0 12.00pm W SPT 2,2,2 N*=4 3.0 7.5 WB _2.5 8.0 2.0 8.3 CL Sandy CLAY, low plasticity, grey mottled brown, with iron staining 8.5 × 100 3,6,10 N*=16 VSt × 200 9.0 _1.0 9.5 0.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH1 BH no:

3 of 5 sheet:

job no.: 2606

Borehole Log

client: Coronation Property Co. Pty Ltd started: 14.8.2014 principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: JΖ location: 20 Shepherd Street, Liverpool MAR checked:

equip diam	pme	nt.										
liam						ed Dril					RL surfac	
				.00m	m			0° bearing: E: N:		(datum:	AHD
<u>lrillir</u>	ng ir	forn	nation			mate	rial inf	ormation		1		
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 p hand 200 p penetro- 400 meter	structure and additional observations
WB	Σ				_		CL	Sandy CLAY, low plasticity, grey mottled brown, with iron staining (continued)	>Wp	VSt		
			R	_0.0				Borehole No: BH1 continued as cored hole from 10.2m				TC Refusal
								10.2111				
					<u>1</u> 0.5							
					_							
					-							
				0.5	-							
					<u>1</u> 1.0							
				1.0	L							
					L							
					<u>1</u> 1.5							
					_							
				1.5								
				_ ===								
					<u>1</u> 2.0							
					_							
					-							
				2.0	_							
					12.5							
					12.0							
				2.5	L							
					_							
					<u>1</u> 3.0							
					-							
				3.0	_							
				_ 5.0								
					<u>1</u> 3.5							
					L							
					-							
				3.5	_							
					 14.0							
					Ľ							
				4.0	L							
					L							
					14.5							
					-							
				4 -	_							
				4.5								
					15.0							

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH1
sheet: 4 of 5
job no.: 2606

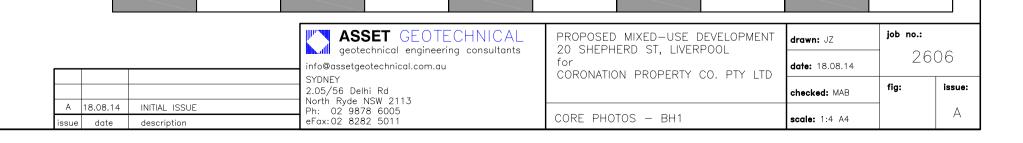
Cored Borehole Log

client: Coronation Property Co. Pty Ltd 14.8.2014 started: principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 0.3 RL 20 200 200 2000 ┸┩╀┪┖ 0.5 10.0 Continued from non-cored borehole from 10.2m SHALE, grey, well developed bedding, thinly laminated 0.0 SW 10.5 -0.5 D=0.4 JT 10° pl ro cl <u>1</u>1.0 JT 45° cu ro cl -Caused by vibration from drilling rig <u>1</u>1.5 _-1.5 D = 0.012.0 A=0.6 CZ ro cl -2.0 BP 0-5° pl ro co/cl 12.5 -25 13.0 A=0.62 JT 45° pl ro cl JT 30° pl ro cl JT 45° pl ro cl -3.0 <u>1</u>3.5 2606 BOREHOLE LOG.GPJ 5/11/14 D = 0.3<u>1</u>4.0 A=0.8 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH1 sheet: 5 of 5

2606


job no.:

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd started: 14.8.2014 principal: finished: 14.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.3 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing core recoven graphic log support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 9 - 9 RL 200 200 200 200 200 ╗┪┪┪┪ SHALE, grey, well developed bedding, thinly laminated (continued) -JT 80° pl ro cl 14 75 BH1 terminated at 14.75m <u>1</u>5.0 -5.0 15.5 -5.5 16.0 <u>1</u>6.5 -6.5 <u>1</u>7.0 -7.0 17.5 18.0 <u>1</u>8.5 <u>1</u>9.0 -9.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH2

job no.: 2606

1 of 5

sheet:

Borehole Log

BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: finished: 15.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.9 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc samples additional observations depth metres notes water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. Asphalt ADT Sandy GRAVEL, fine to coarse grained, dark grey mottled pale grey, trace of ballast materials 0.2 GW M L Fill 9.5 0.5 Sandy CLAY, low plasticity, brown mottled grey, with fine to medium grained sand CLAY, high plasticity, mottled dark grey and brown, trace of fine to medium grained gravel, trace of fine to medium grained sand 0.8 >>Wp 9.0 SPT × 210 4,6,6 N*=12 1.5 _8.0 2.0 7.5 2.5 Σ × 100 SPT 2,3,3 N*=6 7.0 3.0 6.5 3.5 Sandy Silty CLAY, low plasticity, dark grey, fine grained sand, trace of fine grained gravel CL Alluvial 20 SPT 0 N*=0 5.5 4.5 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no: 2 of 5 sheet:

2606

job no.:

Borehole Log

client: 15.8.2014 Coronation Property Co. Pty Ltd started: principal: finished: 15.8.2014 project: Proposed Mixed-Use Develpment logged: JΖ

	tion			<u>20</u> Sh	epherd	Street	<u>, Li</u> ver	oool				checked	: MAB
	ipme		Т	rack	-mount	ed Dri	lling Ri	g			F	RL surfa	ce: 9.9 m appro
	nete			L00m				0° bearing: E:	N:			datum:	AHD
drill	ing i	nfor	mation					ormation					
method	support	water	notes samples, tests, etc	RL	depth metres	graphiclog	USCS symbol	material descriptio soil type: plasticity or particle cl colour, secondary and minor c	naracteristics,	moisture condition	consistency/ density index	100 — hand 200 — penetro- 300 — meter	structure and additional observations
WB	M				_		CL	Sandy Silty CLAY, low plasticity, dai grained sand, trace of fine grained (continued)		>Wp	VS		
				_4.5	5.3 5.5		SW	SAND, fine to coarse grained, brow	n, well graded	M	L		
			SPT 3,3,5 N*=8	_4.0	_								
					<u>6</u> .0								
		meter		_3.5	6.5						MD		
		rved in Piezor		_3.0	_ _ 								*Smell of fuel on soils @7m
		Water Level Observed in Piezometer	SPT 6,7,8 N*=15	_2.5	_ _ _ _ 								*Smell of fuel on soils @7m due to possible leak from tw underground fuel tanks in th vicinity of BH2
				_2.0	_ _ _ _ 								
					8.3		CL	Sandy CLAY, low plasticity, mottlec		>Wp	St		
			SPT	_1.5	8.5 8.5		CL	brown, fine to medium grained sar	id giey dilu	νvp	31	× 190	
			4,4,2 N*=6	_1.0	_ _ _ 								
				_0.5	_ _ _ _ 								
				_0.0	_ _ _						S		
				Γ.	10.0								

SYDNEY SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no:

3 of 5

2606 job no.:

sheet:

Borehole Log

SPT 3,2,2 N*=4

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: 15.8.2014 finished: Proposed Mixed-Use Develpment JΖ project: logged: 20 Shepherd Street, Liverpool location: checked: MAB Track-mounted Drilling Rig equipment: RL surface: 9.9 m approx diameter: 100mm inclination: -90° bearing: datum: AHD drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method depth metres water kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Sandy CLAY, low plasticity, mottled dark grey and brown, fine to medium grained sand (continued) CL WB 20

	l — —	<u>1</u> 0.5	////::\			1 1 1 1	
		10.5	r//				_
			rza::::				
			V/1: /l				
		-	[ZZ]Z::			1 1 1 1	
			Y ZX ○ H				
		F	ヒンオーオ				
			レノナント				
			//// · · ·			1 1 1 1	
		Г	KZACEL				
		、	r⁄xx ∴x			1 1 1 1	
	1.0	'⊢ ∣	レストント				
			$V/V \supset$				
		<u>1</u> 1.0					
		_	ドノオニ・オ				_
			ドンオ・ント				
		L	レンコン・コ				
			V-/-Y				
			[//h:::::1				
		⊢ !	Y /X: ZI				
			ドンオンコ				
			VZX >-1				
1		_	$V/ \cap \mathbb{I}$			1:::::	
			[//:://				
	1.5	; L	Y ZXZ1			1 1 1 1	
			VZX:::1				
		<u>1</u> 1.5	V / 1 · 1 · 1			1 1 1 1	
			//: X				-
			[//t·/:]			1 1 1 1	
			Y ///:				
			K.Z.J.:::1			1 1 1 1	
			レントラオ				
			//·/:			1 : : : :	
			r ∠××:1				
			Y /#::1			1 : : : :	
		-	アンオンコ				
			V/1· //			1 : : : :	
	2.0)	////:1				
			[//:::1			1 : : : :	
		12.0	K/*:::J				
		12.0	7.7 /				
				Borehole No: BH2 continued as cored hole from			TC Refusal
			I	Borehole No: BH2 continued as cored hole from 12m			
		F 1	I	12M			
			I			1 : : : :	
			I				
			I			1:::::	
1			I				
		⊢	I			1 : : : :	
1			I				
	2.5	; [I			1 : : : :	
1			I				
1		<u>1</u> 2.5	I				
		12.5	I				_
			I			1 : : : :	
1			I				
1		_		l .	1 1	1	I .
						1 1 1 1	
		_					
		-					

- 1					<u>1</u> 2.5					
- 1	1			ı L	14.0	1				
- 1			1 1	Г						_
- 1										
- 1									: : : :	
- 1				l +	_					
- 1									1 1 1 1	
- 1			1 1							
- 1										
- 1				Г	_					
- 1										
- 1										
- 1					_					
- 1			1 1							
- 1			1 1						4 4 4 4	
- 1				3.0					: : : :	
- 1			1	⊢ ^{5.0} ⊦	_					
- 1			1 1						1 1 1 1	
- 1					13.0				1 1 1 1	
- 1				l L	13.0				1 1 1 1	_
- 1			1 1	Г						_
- 1			1 1							
- 1										
- 1			1 1	l +						
- 1			1 1							
- 1			1 1							
- 1									4 4 4 4	
- 1			1 1	l 1	_					
- 1			1 1						: : : :	
- 1			1 1							
- 1				l L	_				: : : :	
- 1			1 1	Г						
- 1			1 1							
- 1			1 1	3.5						
- 1			1 1	— J.J ⊢	_					
- 1										
- 1			1 1		12 5					
- 1					13.5				4 4 4 4	
- 1										_
- 1			1 1							
						1			1 1 1 1	
- 1	1	1	1 1	l -	_	1			1 1 1 1	
- 1	1			1		1				
- 1	1	1	1 1	1		1				
- 1	1			1		1				
- 1	1	1	1 1	I 1	_	1				
- 1	1	1	1 1	1		1				
- 1	1	1	1 1	1		1				
- 1	1	1	1 1	I L	_	1			: : : :	
- 1			1 1							
- 1	1	1	1 1	1		1			: : : :	
- 1	1			4.0		1			1 1 1 1	
- 1	1	1	1 1	⊢√ ⊦	_	1				
- 1	1	1	1 1	1		1				
- 1	1			1	14.0	1				
- 1	1	1	1 1	l L	14.0	1				
- 1	1			Г		1				_
- 1	1	1	1 1	1		1				
- 1	1	1	1 1	1		1				
- 1	1	1	1 1	I +	_	1				
- 1	1	1	1 1	1		1			: : : :	

2606 BOREHOLE LOG.GPJ 5/11/14

REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

Borehole Log - Revision 10

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH2 sheet: 4 of 5 job no.: 2606

Cored Borehole Log

proj loca equ	nt: icipal ject: ition: ipme nete	ent:		Propo 20 Sh	sed M ephero moun	Property Co. Pty Ltd lixed-Use Develpment d Street, Liverpool ted Drilling Rig inclination: -90° bearing: E:	N:		fin log ch RL	arted: nished: gged: ecked: surface: ntum:	15.8.2014 15.8.2014 JZ MAB 9.9 m AHD
			natio			erial information			_	ock mass c	
method	support & core-lift	None Observed water	RL	depth metres	graphic log core recovery	rock substance description rock type; grain characteristics, colour, structure, minor components	weathering	estimated strength Is (50) MPa × pull length	RQD %	defect spacing mm	defect description type, inclination, thickness, shape, roughness, coating specific ger
0		None C	2.0	12.0		Continued from non-cored borehole from 12m SHALE, dark grey, well developed bedding, thinly laminated	SW				
NMLC			2.5			or vac, daingrey, were developed bedaing, uniny latiniated					— JT 45° pl sm cl - — JT 45° pl sm cl -
			3.0	13.0				D=0.86	6		= — JT 25° pl sm cl - - -
			3.5	13.5 				D=0.5	4		-
			4.0	14.0 - -				Q A=0.77			– – JT 20° pl sm cl
			5.0	14.5 - - -				X D=0.8	1		•
			5.5					O A=0.84	ı		
			6.0					x D=0.5i			
			6.5	_ _ _ _ _ _ 							

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH2 BH no: 5 of 5 sheet: job no.: 2606

Cored Borehole Log

client: Coronation Property Co. Pty Ltd started: 15.8.2014 15.8.2014 principal: finished: project: Proposed Mixed-Use Develpment logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.9 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing core recoven graphic log support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 depth 9 - 9 RL 200 200 200 200 200 ╗┪┪┪┪ SHALE, dark grey, well developed bedding, thinly laminated NMLC (continued) BH2 terminated at 16.74m 16.74 -7.0 17.0 -7.5 17.5 18.0 _-8.5 18.5 -9.0 <u>1</u>9.0 -9.5 19.5 -10.0 20.0 <u>2</u>0.5 <u>2</u>1.0

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 **BH no: BH3** sheet: 1 of 3

job no.: 2606

Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: finished: 19.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m approx diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition samples, tests, etc additional observations depth metres notes water kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. Asphalt Asphalt ADT 10.0 0.1 Sandy Gravelly CLAY, low plasticity, mottled dark grey/red brown/white, fine to coarse grained sand, fine to coaorse grained gravel, with sandstone Fill CL ЧWр S 0.5 SW SAND, fine to coarse grained, brown, well graded MD 95 Sandy CLAY, low to medium plasticity, brown >Wp 9.0 mottled dark grey, with terracotta fragments from 1.5 to 1.7m SPT 1,2,1 N*=3 8.5 8.0 Σ CLAY, medium to high plasticity, mottled red-brown/grey/brown, with fine to medium grained sand, with ironstaining 26 Alluvial СН VSt SPT 2,6,8 N*=14 3.0 7.0 × 300 SPT 7,9,10 N*=19 5.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH3

sheet: 2 of 3

job no.: 2606

started:

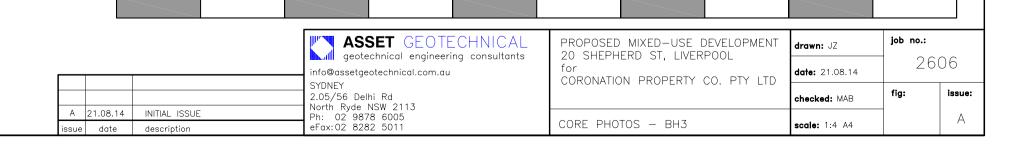
15.8.2014

Borehole Log

client:

BOREHOLE LOG.GPJ 5/11/14

principal: finished: 19.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations water kPa soil type: plasticity or particle characteristics, R 100 200 40 400 400 colour, secondary and minor components. СН CLAY, medium to high plasticity, mottled red-brown/grey/brown, with fine to medium 5.0 grained sand, with ironstaining (continued) × 150 6.0 4.0 Water Level Observed in Piezometer 6.5 _3.5 Clayey SAND, fine to medium grained, brown, 6.8 MD SP poorly graded 3.0 SPT 6,6,10 N*=16 2.5 8.0 2.0 8.5 _1.0 0.5 Borehole No: BH3 continued as cored hole from 9.7m TC Refusal Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED


SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH3
sheet: 3 of 3
job no.: 2606

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 15.8.2014 started: principal: finished: 19.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 water depth 0.3 RL 20 200 200 2000 Observed 9.5 0.5 Continued from non-cored borehole from 9.7m SHALE, dark grey, well developed bedding, thinly laminated D=0.4 10.0 A=1.2 0.0 Fractured Zone, sm, cl 10.5 -0.5 D=0.5 <u>1</u>1.0 A=0.8 JT 10° cu sm cl 0-5° pl sm cl Clay SM, sm co <u>1</u>1.5 JT 45° pl sm cl D=0.2 12.0 -2.0 12.5 BH3 terminated at 12.83m 12.83 <u>1</u>3.0 <u>1</u>3.5 _-3.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 **BH no: BH4** sheet: 1 of 4

19.8.2014

job no.: 2606

started:

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index USCS symbol material description structure and moisture condition tests, etc additional observations samples method depth metres notes kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. Clayey Sandy GRAVEL, fine to coarse grained, grey mottled brown, well graded ADT Observed None Sandy Gravelly CLAY, low to medium plasticity, mottled grey and brown, fine to coarse grained sand, fine to medium grained gravel 0.4CL >>Wp D 0.5 9.0 × 80 D SPT 0 N*=0 St 1.5 × 150 Clayey SAND, fine to coarse grained, dark grey, with fine to medium grained gravel, well graded SC D Sandy CLAY, high plasticity, dark grey mottled brown , fine to medium grained sand, with fine grained gravel *Possible coal tar contamination* >>Wp СН VSt × 120 D 2.5 VSt Σ × 300 SPT 4,5,5 N*=10 D 3.0 6.5 3.5 6.0 4.0 SPT 1,3,6 N*=9 4.2 Clayey SAND, fine to coarse grained, brown mottled red-brown, with ironstaining 4.5 5.0 Borehole Log - Revision 10 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH4 BH no:

sheet: 2 of 4

2606 job no.:

19.8.2014

Borehole Log

client:

Coronation Property Co. Pty Ltd started: principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition samples, tests, etc additional observations method depth metres notes kPa soil type: plasticity or particle characteristics, RL100 200 40 400 400 colour, secondary and minor components. Clayey SAND, fine to coarse grained, brown mottled red-brown, with ironstaining (continued) SC WB None Observed 5.5 4.0 × 290 8,5,6 N*=11 5.7 CLAY, high plasticity, dark brown, trace of fine >>Wp VSt grained sand 6.0 6.5 SAND, fine to coarse grained, pale brown, well graded, with fine grained gravel Alluvial SW SPT 3,4,4 N*=8 <u>7</u>.5 2.0 8.0 1.5 8.5 1.0 SPT 2,3,5 N*=8 D 9.0 9.5 0.0 D REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

SYDNEY SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH4 BH no: sheet: 3 of 4

19.8.2014

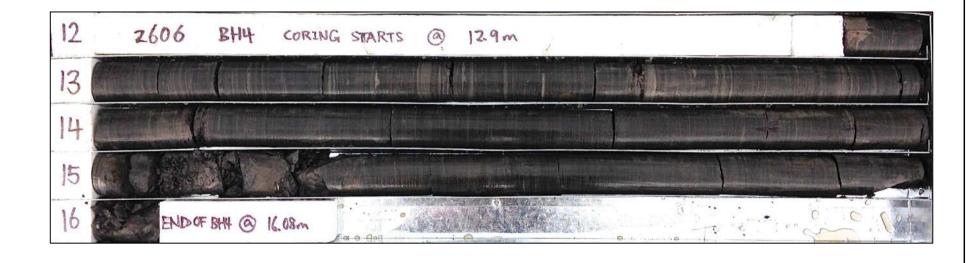
2606 job no.:

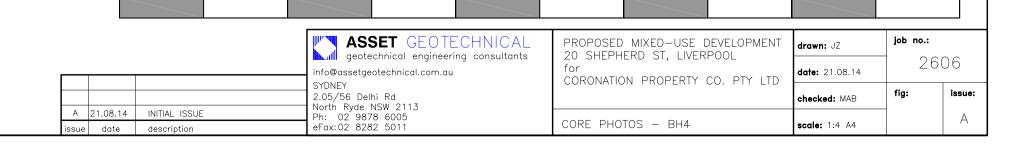
Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

Coronation Property Co. Pty Ltd started: principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m approx. diameter: 100mm inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method depth metres kPa soil type: plasticity or particle characteristics, \mathbb{R} 100 200 40 400 400 colour, secondary and minor components. SP SAND, fine to medium grained, grey, poorly graded WB None Observed SPT 2,3,7 N*=10 10.5 -1.0 11.0 Sandy CLAY, low plasticity, dark grey, with wood 11.5 12.0 _-2.5 12.5 -3.0 Borehole No: BH4 continued as cored hole from TC Refusal 13.0 -3.5 13.5 -4.0 <u>1</u>4.0 14.5 -5.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10


SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011


BH no: BH4 sheet: 4 of 4 job no.: 2606

Cored Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

client: Coronation Property Co. Pty Ltd 19.8.2014 started: principal: finished: 20.8.2014 project: Proposed Mixed-Use Develpment logged: location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 9.5 m inclination: -90° diameter: 100mm bearing: datum: AHD drilling information material information rock mass defects estimated Is₍₅₀₎ MPa defect rock substance description defect description strength spacing graphic log core recovery support & core-lift type, inclination, rock type; grain characteristics, colour, MPa thickness, shape, roughness, coating structure, minor components 0.03 water depth 0.3 RL 20 200 200 2000 Observed 13.0^{12.9} SHALE, dark grey, well developed bedding, thinly laminated -3.5 13.5 -4.0 Clay SM, sm cl D=0.1 A=0.6 <u>1</u>4.0 Clay SM, sm cl BP 0-5° pl sm cl 14.5 D=0.1 A=1.23 <u>1</u>5.0 -5.5 - Crushed Zone, sm cl Fractured Zone, sm cl 15.5 -6.0 D=0.7 JT 15° cu sm cl A=0.7 16.0 BH4 terminated at 16.08m <u>1</u>6.5 _-7.5 <u>1</u>7.0 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Cored Borehole Log - Revision 9

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

1 of 4

job no.: 2606

sheet:

Borehole Log

2606 BOREHOLE LOG.GPJ 5/11/14

 client:
 Coronation Property Co. Pty Ltd
 started:
 20.8.2014

 principal:
 finished:
 20.8.2014

 project:
 Proposed Mixed-Use Develpment
 logged:
 JZ

 location:
 20 Shepherd Street, Liverpool
 checked:
 MAB

 equipment:
 Track-mounted Drilling Rig
 RL surface:
 10.1 m
 approx.

 diameter:
 100mm
 inclination:
 -90° bearing:
 -- E:
 N:
 datum:
 AHD

	tion				epherd						hecked	
-	ipme				mount						RL surfa	• • • • • • • • • • • • • • • • • • • •
	nete			.00m	m			0° bearing: E: N:			datum:	AHD
drill	ing i	nfor	mation		1	mate	rial inf	ormation			I	T
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	100 mand 200 mage penetro- 400 meter	structure and additional observations
ADT	O	None Observed		_10.0	0.1		SC	Asphalt Clayey Gravelly SAND, fine to coarse grained, mottled brown and grey, well graded	 M	 L		Asphalt Fill -
		None Ob		_9.5	0.5 - -		CL	Gravelly Sandy CLAY, low plasticity, mottled brown/grey/red-brown, fine to coarse grained sand and gravel	~Wp	F		- - - - -
				_9.0	1.0		SC	Clayey SAND, fine to coarse grained, dark grey mottled brown, with fine to medium grained gravel, with ash deposits	M	L	× 100	
				_8.5			SP	SAND, fine to medium grained, brown, poorly graded				Alluvial -
				_8.0	 							- - - -
WB	Σ		SPT 2,3,3 N*=6	_7.5								-
				_7.0								- - -
			D	6.5	3.3 - 3.5 - -		CL	Sandy CLAY, low plasticity, dark grey, with fine grained gravel	>Wp	St		- - -
			D	6.0								- - -
			D	_5.5	<u>4</u> .5							
			D									
055	ED TO			 	5.0		FLON: OF	 TERMS AND SYMBOLS USED			1111	Borehole Log - Revision 10

Coronation Property Co. Pty Ltd

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

sheet: 2 of 4

job no.: 2606

started:

20.8.2014

Borehole Log

client:

2606 BOREHOLE LOG.GPJ 5/11/14

principal: finished: 20.8.2014 Proposed Mixed-Use Develpment project: logged: JΖ location: 20 Shepherd Street, Liverpool checked: MAB equipment: Track-mounted Drilling Rig RL surface: 10.1 m approx. diameter: inclination: -90° datum: AHD bearing: drilling information material information hand penetro-meter consistency/ density index **USCS** symbol graphic log material description structure and moisture condition notes samples, tests, etc additional observations method water kPa soil type: plasticity or particle characteristics, RLcolour, secondary and minor components. CL Sandy CLAY, low plasticity, dark grey, with fine grained gravel (continued) WB None Observed 5.0 SC Clayey SAND, fine to medium grained, brown D 10,15,15 N*=30 D 6.0 6.5 _3.5 D 7.0 3.0 D MD 2.5 8.0 2.0 8.5 SPT 4,6,8 N*=14 _1.0 9.5 CL Sandy CLAY, low plasticity, brown, with fine grained >Wp 0.5 REFER TO EXPLANATION SHEETS FOR DESCRIPTION OF TERMS AND SYMBOLS USED Borehole Log - Revision 10

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no: BH5

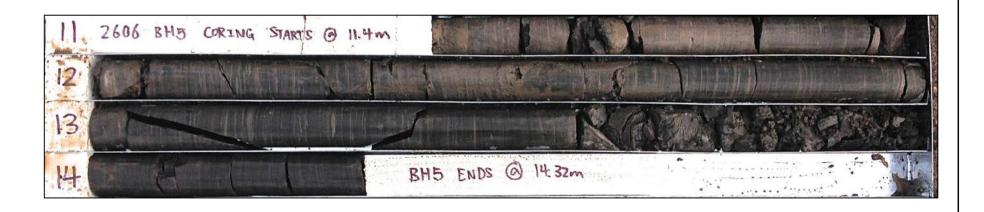
sheet: 3 of 4

job no.: 2606

Borehole Log

client:Coronation Property Co. Pty Ltdstarted:20.8.2014principal:finished:20.8.2014project:Proposed Mixed-Use Develpmentlogged:JZlocation:20 Shepherd Street, Liverpoolchecked:MAB

ocation:	20	Shepher	d Street, Liver	pool	checked:	MAB
quipment:	Tra	ack-moun	ted Drilling Ri	g	RL surface:	- 1-1-
liameter:		0mm		O° bearing: E: N:	datum:	AHD
rilling infor	mation		material inf	ormation		
support water	notes samples, tests, etc	RL depth metres	graphic log USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	consistency/ density index 100 hand 200 penetro- 400 meter	structure and additional observations
W M	0	0.0	CL	Sandy CLAY, low plasticity, brown, with fine grained >Wp sand (continued)	MD	
		0.5				
		11.0				
		11.5 1.5		Borehole No: BH5 continued as cored hole from 11.4m	тс	Refusal
		12.0				
		13.0 				
		13.5 				
		14.0 4.0				
		14.5 				
		15.0		TERMS AND SYMBOLS LISED		Rorehole Log - Revision


Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au

SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011

BH no: BH5 sheet: 4 of 4 job no.: 2606

Cored Borehole Log

clien	nt:			Coron	ation	Property Co. Pty Ltd			started:	20.8.2014
orino	cipal	:							finished:	20.8.2014
proje	ect:			Propo	sed N	1ixed-Use Develpment			logged:	JZ
ocaf	tion:			20 Sh	epher	d Street, Liverpool			checked:	MAB
equi	pme	nt:		Track-	-mour	nted Drilling Rig			RL surface:	10.1 m
	nete			100m		inclination: -90° bearing: E:	N:		datum:	AHD
illirk	ing ir	nfori	matic	n	mate	erial information			rock mass	defects
						rock substance description		estimated Is ₍₅₀₎ strength MPa	defect	defect description
					graphic log core recovery	Tock substance description	_ n		spacing mm	
ا چ	ĕ≢				ic lo	rock type; grain characteristics, colour,	erij	MPa Lia	%	type, inclination, thickness, shape,
method	support & core-lift	water	D.	depth	aph	structure, minor components	weathering	EL 0.03 V 0.3 M H 1 B WH 3 WH 3 WH 3 EH 10 D = diametral X A = axial O	ROD %	roughness, coating
Е	ਲ ਠ		RL	metres	50 0		>	A=ay	2000 2000 2000 2000	specific gene
		Vone Observed	1.0							
		esq								
		ЭеС		_						
_		Š				Continued from non-cored borehole from 11.4m				
NMLC				<u>1</u> 1.5		SHALE, grey, well developed bedding, thinly laminated	RS_ SW			
ź			1.5				0			Crushed SM, sm cl
										SM sm cl
								D=0.16		□-SM sm cl
				L	E					
				<u>1</u> 2.0	<u> </u>	-		A=0.4		F
			2.0	L		†		D=0.16		Clay SM, sm co
				L	E					JT 45° pl sm cl
									5	JT 80° pl sm cl JT 45° pl sm cl
									 	JT 45° pl sm cl
				12.5					: : : : : :	Clay SM, sm co
			2.5						ا الله ا	Clay SM, sm co
								D=0.67	/ T_	JT 25° pl sm cl
								A=0.82		0120 prom or
								: : //-0.02		0
				13.0						— JT 25° pi sm cl
			3.0							
										JT 70° pl sm cl
					<u> </u>					
										JT 60° un sm cl
				<u>1</u> 3.5				D=0.43	'	
			3.5					D : : A=1.02	النال	H
										- *Possible drilling
										induced fractured
				14.0						zone*
			4.0		E				📜 : : :	<u> </u>
						-		D=0.59		-
				14.32		BH5 terminated at 14.32m		A=0.62		
				<u>1</u> 4.5						
			4.5	L						
				L						
				L						
				L						
				<u>1</u> 5.0						
			5.0	L						
				L						
				L						
				L						
			1	15.5						
						I .	- 1	1:::::	1 1:::::	I
			5.5							
			5.5							
			5.5	_						
			5.5	_						

		ASSET GEOTECHNICAL geotechnical engineering consultants	PROPOSED MIXED-USE DEVELOPMENT 20 SHEPHERD ST, LIVERPOOL	drawn: JZ	job no.:	
		info@assetgeotechnical.com.au	for CORONATION PROPERTY CO. PTY LTD	date: 21.08.14	2606	
		SYDNEY 2.05/56 Delhi Rd North Ryde NSW 2113	CONCINCION FINOI ENTI CO. TTT EID	checked: MAB	fig:	issue:
A 21.08.14	INITIAL ISSUE	Ph: 02 9878 6005	CORE PHOTOS - BH5	scale: 1:4 A4		l A

APPENDIX C

Laboratory Test Results

		F	POINT LO	_	NGTH 4133 4.1	INDE	X RI	EPOR	Т		
Client:	Asset Geot	echnical Pty	y Ltd		Moisture Content Condition:	As Drilled					
Address:	Suite 2.05,	56 Delhi Ro	oad, North Ryde		Storage History:	Core Box	Core Box				
Project:	20 Shephe	rd St, Liverp	pool (2606)		Report No:	S0879-PLT					
Job No:	14-573				Date Tested:	25/08/2014					
Test Proce	edure:	J	AS4133 4.1	Rock strength tests - Determinati	ion of point load strength i	index					
Sampling:		Sampled by					Date	Sampled:	1	4/8/14-20/8/14	
Preparatio	n:	Prepared in	accordance with the t	est method							
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
		10.80-		Diametral	-	52.0	1.13	0.42	0.42		
S0879	BH1	10.94	Siltstone	Axial	52.0	48.0	2.40	0.75	0.80		
50000	BH1 11.91- 12.00		C'IL I	Diametral	-	52.0	0.17	0.06	0.06		
S0880			Siltstone	Axial	52.0	50.0	1.96	0.59	0.63		
C0001	DUI	12.84-	Ciltotono	Diametral	-	52.0	1.18	0.43	0.44		
S0881	BH1	13.00	Siltstone	Axial	52.0	40.0	1.62	0.61	0.62		
S0882	BH1	13.87-	Ciltatono	Diametral	-	52.0	1.04	0.38	0.39		
30882	вит	14.00	Siltstone -	Axial	52.0	39.0	2.15	0.83	0.84		
S0883	BH1	15.43-	Siltstone	Diametral	-	52.0	2.21	0.82	0.83		
30003	DITI	15.54	Sitistoric	Axial	52.0	42.0	3.36	1.21	1.24		
			_								
			_								
			_								
			-								
Comr	ments:										
NAT	docu comp	ment are tracea	sts, calibrations and/or mea ble to Australian/national s /IEC 17025. This documen	standards. Accredited for		Authorised				25/08/2014	
1000		_	ed Laboratory Numb	per: 14874 Facility Name: Sydney B	Pranch Sita					Date: Macquarie Geotechnical	
GEO	QUARIE TECH			Facility Location: 8/10 B		xandria NSW 2	2015			3 Watt Drive	

Site No.: 22365

BATHURST NSW 2795

		F	POINT LO		NGTH 4133 4.1	INDE	K RI	EPOR	T		
Client:	Asset Geot	echnical Pty	/ Ltd		Moisture Content Condition:	As Drilled					
Address:	Suite 2.05,	56 Delhi Ro	oad, North Ryde		Storage History:	Core Box	Core Box				
Project:	20 Shephe	rd St, Liverp	ool (2606)		Report No:	S0884-PLT					
Job No:	14-573				Date Tested:	25/08/2014					
Test Proce	edure:	J	AS4133 4.1	Rock strength tests - Determinati	ion of point load strength i	ndex					
Sampling:		Sampled by					Date	Sampled:	1	4/8/14-20/8/14	
Preparatio	n:	Prepared in	accordance with the t	est method							
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
		12.92-		Diametral	-	52.0	2.12	0.78	0.80		
S0884	BH2	13.00	Siltstone -	Axial	52.0	39.0	2.21	0.85	0.86		
	BH2 13.88- 14.00			Diametral	-	52.0	1.45	0.53	0.54		
S0885			Siltstone	Axial	52.0	38.0	1.95	0.77	0.77		
		14.87-		Diametral	-	52.0	2.17	0.80	0.81		
S0886	BH2	14.98	Siltstone -	Axial	52.0	43.0	2.34	0.82	0.84		
		15.86-		Diametral	-	52.0	1.41	0.52	0.53		
S0887	BH2	16.00	Siltstone -	Axial	52.0	38.0	1.98	0.79	0.79		
	2112	16.63-	alle e	Diametral	-	52.0	3.36	1.24	1.26		
S0888	BH2	16.74	Siltstone	Axial	52.0	37.0	4.11	1.68	1.67		
			-								
Comr	ments:										
NAT	docu comp	ment are tracea	sts, calibrations and/or mea ble to Australian/national s IEC 17025. This documen	standards. Accredited for		Authorised				25/08/2014	
38077		_	ed Laboratory Numb		teenah Cit					Date:	
GEO	QUARIE TECH			Facility Name: Sydney E Facility Location: 8/10 B		xandria NSW 2	2015			Macquarie Geotechnical 3 Watt Drive	

Site No.: 22365

BATHURST NSW 2795

		P	POINT LO	AD STRE	NGTH 4133 4.1	INDE	X RI	POR	T	
Client:	Asset Geot	echnical Pty	, Ltd	AS	Moisture Content Condition:	As Drilled				
Address:	Suite 2.05,	56 Delhi Ro	ad, North Ryde		Storage History:	Core Box				
Project:	20 Shephe	rd St, Liverp	ool (2606)		Report No:	S0889-PLT				
Job No:	14-573				Date Tested:	25/08/2014	1			
Test Proce	edure:	J	AS4133 4.1	Rock strength tests - Determination	n of point load strength i	ndex				
Sampling:		Sampled by	Client				Date	Sampled:	1	4/8/14-20/8/14
Preparatio	n:	Prepared in	accordance with the	test method						
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
cosso	рцэ	0.00.10.00	Ciltotana	Diametral	-	52.0	1.27	0.47	0.48	
S0889	BH3	9.90-10.00	Siltstone	Axial	52.0	47.0	3.54	1.14	1.20	
S0890	BH3	10.89-	Siltstone	Diametral	-	52.0	1.50	0.55	0.56	
		11.00		Axial	52.0	38.0	2.02	0.80	0.80	
S0891	BH3	11.89-	Siltstone	Diametral	-	52.0	0.56	0.21	0.21	
		12.00		Axial	52.0	40.0	2.16	0.82	0.83	
S0892	BH3	12.69-	Siltstone	Diametral	-	52.0	2.35	0.87	0.88	
		12.80		Axial	52.0	35.0	3.71	1.60	1.57	
Comr	nents:						ı			
NAT	docui	ment are traceal	ble to Australian/national	asurements included in this standards. Accredited for nt shall not be reproduced,		Authorised				25/08/2014
_	NA	TA Accredite	ed Laboratory Num	ber: 14874						Date:
MACC	QUARIE			Facility Name: Sydney B	ranch Site					Macquarie Geotechnical
GEO	Facility Name: Sydney Branch Site Macquarie Geotechnical Facility Location: 8/10 Bradford Street, Alexandria NSW 2015 Site No.: 22365 Macquarie Geotechnical 3 Watt Drive BATHURST NSW 2795									

		F	POINT LC	AD STRE	NGTH 4133 4.1	INDE	X RI	EPOR	Т	
Client:	Asset Geot	echnical Pty	/ Ltd		Moisture Content Condition:	As Drilled				
Address:	Suite 2.05,	56 Delhi Ro	oad, North Ryde		Storage History:	Core Box				
Project:	20 Shephe	rd St, Liverp	ool (2606)		Report No:	S0893-PL	Г			
Job No:	14-573				Date Tested:	25/08/2014	1			
Test Proce	edure:	V	AS4133 4.1	Rock strength tests - Determination	on of point load strength i	index				
Sampling:		Sampled by					Date	Sampled:	1	4/8/14-20/8/14
Preparatio	n:	Prepared in	accordance with the	test method						
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
C0002	DIIA	12.90-	Cilbatana	Diametral	-	52.0	0.80	0.29	0.30	
S0893	BH4	13.00	Siltstone	Axial	52.0	40.0	2.94	1.11	1.12	
		13.80-		Diametral	-	52.0	0.42	0.16	0.16	
S0894	BH4	13.89	Siltstone	Axial	52.0	43.0	1.68	0.59	0.61	
	14.80-			Diametral	-	52.0	0.29	0.11	0.11	
S0895	BH4 14.90		Siltstone	Axial	52.0	36.0	2.96	1.24	1.23	
		15.75-		Diametral	-	52.0	2.00	0.74	0.75	
S0896	BH4	15.88	Siltstone	Axial	52.0	43.0	1.93	0.68	0.70	
Comr	ments:									
NAT	docui comp	ment are tracea	ble to Australian/national	asurements included in this standards. Accredited for nt shall not be reproduced,		Authorised				25/08/2014
•	NA	TA Accredit	ed Laboratory Num							Date:
MACO GEO	QUARIE TECH			Facility Name: Sydney B Facility Location: 8/10 Bi Site No.: 22365		xandria NSW 2	2015			Macquarie Geotechnical 3 Watt Drive BATHURST NSW 2795

		F	POINT LC	AD STRE	NGTH 4133 4.1	INDE	X RI	EPOR	Т	
Client:	Asset Geot	echnical Pty	y Ltd		Moisture Content Condition:	As Drilled				
Address:	Suite 2.05,	56 Delhi Ro	oad, North Ryde		Storage History:	Core Box				
Project:	20 Shephe	rd St, Liverp	pool (2606)		Report No:	S0897-PL	Г			
Job No:	14-573				Date Tested:	25/08/2014	1			
Test Proce	edure:	J	AS4133 4.1	Rock strength tests - Determination	on of point load strength i	index				
Sampling:		Sampled by					Date	Sampled:	1	4/8/14-20/8/14
Preparatio	n:	Prepared in	accordance with the	test method						
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
50007	DUE	11.81-	Cilbatana	Diametral	-	52.0	0.43	0.16	0.16	
S0897	BH5	11.93	Siltstone	Axial	52.0	47.0	1.20	0.38	0.40	
	BH5 12.70- 12.79			Diametral	-	52.0	1.79	0.66	0.67	
S0898			Siltstone	Axial	52.0	43.0	2.26	0.79	0.82	
	13.46			Diametral	-	52.0	1.15	0.43	0.43	
S0899	BH5	13.58	Siltstone	Axial	52.0	41.0	2.72	1.00	1.02	
		14.24-		Diametral	-	52.0	1.58	0.58	0.59	
S0900	BH5	14.32	Siltstone	Axial	52.0	37.0	1.52	0.62	0.62	
Comr	ments:									
NAT	docui comp	ment are tracea	ble to Australian/national	asurements included in this standards. Accredited for nt shall not be reproduced,		Authorised				25/08/2014
•	NA	TA Accredit	ed Laboratory Num							Date:
MACO GEO	QUARIE TECH			Facility Name: Sydney B Facility Location: 8/10 Bi Site No.: 22365		xandria NSW 2	2015			Macquarie Geotechnical 3 Watt Drive BATHURST NSW 2795

Client Name:	Asset Geotechnical		Project Name:	2606 - Proposed Mixed	Use Development
Client Contact:	Joel Huang		Project Location:	20 Shepherd St. Liverpo	
	-				
Batch_ID	Sample_ID	Data::SampleName	Field_pHf	Field_pHFOX	Soil_Colour
31530	1	BH1 0.5m	8.25	8.67	10YR 4/1 Dark Grey
31530	2	BH1 1.0m	8.22	7.7	7.5YR 5/2 Brown
31530	3	BH1 1.5m	6.56	5.37	10YR 3/1 Very Dark Grey
31530	4	BH1 2.0m	7.94	6.61	7.5YR 4/2 Brown
31530	5	BH1 2.5m	7.53	6.8	7.5YR 4/2 Brown
31530	7	BH1 3.5m	6.66	6.22	5YR 4/3 Reddish Brown
31530	8	BH1 4.0m	6.85	5.38	7.5YR 4/3 Brown
31530	9	BH1 4.5m	7.14	6.65	7.5YR 4/3 Brown
31530	10	BH1 5.0m	6.79	5.65	7.5YR 4/3 Brown
31530	11	BH1 5.5m	6.65	5.53	7.5YR 5/4 Brown
31530	12	BH1 6.0m	6.53	4.95	7.5YR 5/3 Brown
31530	13	BH1 6.5m	6.66	6.8	7.5YR 4/3 Brown
31530	14	BH1 7.0m	6.82	5.51	7.5YR 4/3 Brown
31530	15	BH4 0.5m	8.51	8.65	10YR 4/1 Dark Grey
31530	16	BH4 1.0m	8.1	8.06	10YR 4/1 Dark Grey
31530	17	BH4 1.5m	7.88	7.69	10YR 4/2 Dark Grevish Brown
31530	18	BH4 2.0m	8.06	7.08	10YR 4/1 Dark Grey
31530	19	BH4 2.5m	8.08	7.51	7.5YR 4/2 Brown
31530	20	BH4 3.0m	6.62	6.59	10YR 4/2 Dark Grevish Brown
31530	21	BH4 SPT 4-4.45m	7.24	6.56	Mottled: 7.5YR 4/1 Dark Grey, 7.5YR 4/3 Brown
31530	22	BH4 8.0m	6.4	4.72	10YR 4/2 Dark Greyish Brown
31530	25	BH5 3.5m	7.25	7.48	7.5YR 4/1 Dark Grey
31530	26	BH5 4.0m	7.25	7.57	10YR 4/2 Dark Greyish Brown
31530	27	BH5 5.0m	7.03	7.05	10YR 4/2 Dark Greyish Brown
31530	28	BH5 5.5m	7.4	4.99	10YR 5/2 Greyish Brown
31530	29	BH5 6.0m	6.83	5.78	10YR 5/4 Yellowish Brown
31530	30	BH5 7.0m	6.92	5.78	10YR 5/4 Yellowish Brown
31530	31	BH5 7.5m	7.12	5.73	10YR 5/3 Brown
			1	1	
					I .

20 Shepherd St, Liverpool

Pennant Hills NSW 1715

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax:

2606 - Proposed Mixed use Development

PO Box 357 Mailing Address:

Em: info@sesl.com.au Web: www.sesl.com.au

Batch N°: 31531 Sample N°: 6 Date Received: 22/8/14 Report Status: O Draft Final

Client Name: **Asset Geotechnical**

Client Contact: Joel Huang

Client Job N°:

Client Order N°: Address: Suite2.05/56 Delhi Rd

North Ryde NSW 2113

SESL Quote N°:

Project Name:

Location:

Sample Name: BH1 3.5m Description: Soil

Test Type: **USAWS**

TEST	RESULT	COMMENTS
pH in water (1:5)	6.7	
EC mS/cm (1:5)	0.14	
Texture Class	Sandy Clay	
Soil Permeability Class		
SOLUBLE ANION ANALYSIS		
Sulphate (1:5) mgSO ₄ / kg	180	
Chloride (1:5) mgCl / kg	<7.0	
* Resistivity Ω. m	26.94	
* Resistivity tested on a saturated sa	mple/paste	(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia

No commentary requested from SESL.

pH, EC, Soluble SO₄: Bradley et al., (1983); CI, (4500-CI- E; APHA, 1998); Resistivity, AS1289.4.4.1:1997, Texture - PM0003 (Texture- "Northcote" (1992))

3/09/2014

Consultant: Kelly Lee

Authorised Signatory: Ryan Jacka

Tests are performed under a quality system certified as complying with ISO 9001: 2008. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full.

Date Report Generated

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax:

PO Box 357 Mailing Address:

Em: info@sesl.com.au Web: www.sesl.com.au

Batch N°: 31531 Sample N°: 12 Date Received: 22/8/14 Report Status: O Draft Final

Client Name: **Asset Geotechnical**

Client Contact: Joel Huang

Client Job N°:

Client Order N°: Address: Suite2.05/56 Delhi Rd

North Ryde NSW 2113

2606 - Proposed Mixed use Development Project Name:

20 Shepherd St, Liverpool Location:

Pennant Hills NSW 1715

SESL Quote N°:

Sample Name: BH1 6.5m Description: Soil **USAWS** Test Type:

TEST	RESULT	COMMENTS
pH in water (1:5)	7.1	
EC mS/cm (1:5)	0.04	
Texture Class	Sand	
Soil Permeability Class		
SOLUBLE ANION ANALYSIS		
Sulphate (1:5) mgSO ₄ / kg	20	
Chloride (1:5) mgCl / kg	30	
* Resistivity Ω. m	161.24	
* Resistivity tested on a saturated s	ample/paste	(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia

No commentary requested from SESL.

pH, EC, Soluble SO₄: Bradley et al., (1983); CI, (4500-CI- E; APHA, 1998); Resistivity, AS1289.4.4.1:1997, Texture - PM0003 (Texture- "Northcote" (1992))

Consultant: Kelly Lee

Authorised Signatory: Ryan Jacka

Date Report Generated 3/09/2014

Sample Drop Off: 16 Chilvers Road

16 Chilvers Road **Tel:** 1300 30 40 80 Thornleigh NSW 2120 **Fax:** 1300 64 46 89

Mailing Address: PO Box 357

Em: info@sesl.com.au
Web: www.sesl.com.au

Client Name: Asset Geotechnical

Client Contact: Joel Huang

Client Job N°:

Client Order N°:
Address: Suite2.05/56 Delhi

North Ryde NSW 2113

Suite2.05/56 Delhi Rd

Project Name: 2606 - Proposed Mixed use Development

Location: 20 Shepherd St, Liverpool

Pennant Hills NSW 1715

SESL Quote N°:

Sample Name: BH4 4.0m
Description: Soil
Test Type: USAWS

TEST	RESULT	COMMENTS	
pH in water (1:5)	5.7		
EC mS/cm (1:5)	0.45		
Texture Class	Sandy Clay		
Soil Permeability Class			
SOLUBLE ANION ANALYSIS			
Sulphate (1:5) mgSO ₄ / kg	600		
Chloride (1:5) mgCl/kg	50		
* Resistivity Ω. m	6.66		
* Resistivity tested on a saturated	sample/paste		(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia

No commentary requested from SESL.

pH, EC, Soluble SO₄: Bradley et al., (1983); CI, (4500-CI- E; APHA, 1998);
 Resistivity, AS1289.4.4.1:1997, Texture - PM0003 (Texture- "Northcote" (1992))

_

Date Report Generated 3/09/2014

Consultant: Kelly Lee 数八

Authorised Signatory: Ryan Jacka

Sample Drop Off: 16 Chilvers Road

Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax:

PO Box 357 Mailing Address:

Em: info@sesl.com.au Web: www.sesl.com.au

Batch N°: 31531 Sample N°: 21 Date Received: 22/8/14 Report Status: O Draft Final

Client Name: **Asset Geotechnical**

Client Contact: Joel Huang

Client Job N°:

Client Order N°:

Address: Suite2.05/56 Delhi Rd North Ryde NSW 2113

2606 - Proposed Mixed use Development Project Name:

Pennant Hills NSW 1715

Location: 20 Shepherd St, Liverpool

SESL Quote N°:

Sample Name: BH4 SPT 7-7.45m

Description: Soil Test Type: **USAWS**

TEST	RESULT	COMMENTS
pH in water (1:5)	7.8	
EC mS/cm (1:5)	0.03	
Texture Class	Sand	
Soil Permeability Class		
SOLUBLE ANION ANALYSIS		
Sulphate (1:5) mgSO ₄ / kg	20	
Chloride (1:5) mgCl / kg	10	
* Resistivity Ω. m	39.3	
* Resistivity tested on a saturated sam	ple/paste	(Note:- 10,000 mg/kg = 1%)

Recommendations

Analysed by SESL Australia

No commentary requested from SESL.

pH, EC, Soluble SO₄: Bradley et al., (1983); CI, (4500-CI- E; APHA, 1998); Resistivity, AS1289.4.4.1:1997, Texture - PM0003 (Texture- "Northcote" (1992))

3/09/2014

Consultant: Kelly Lee

Authorised Signatory: Ryan Jacka

Tests are performed under a quality system certified as complying with ISO 9001: 2008. Results and conclusions assume that sampling is representative. This document shall not be reproduced except in full.

Date Report Generated

Mehlich 3 - Multi-nutrient Extractant

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80 Fax:
 1300 64 46 89

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Client Name: Asset Geotechnical

Client Contact: Joel Huang

Client Job N°:

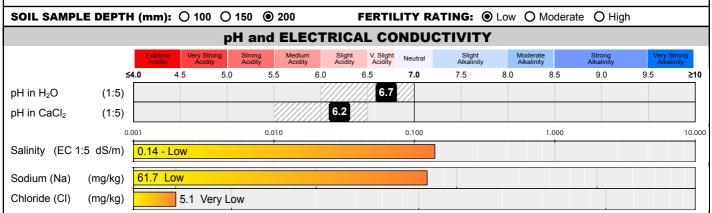
Client Order N°:

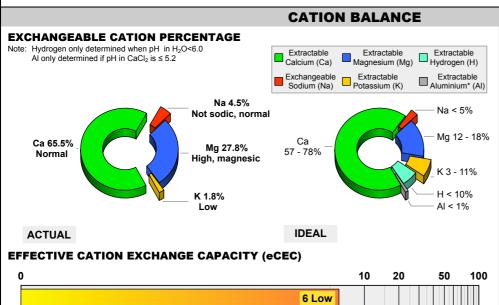
Address: Suite2.05/56 Delhi Rd

North Ryde NSW 2113

Project Name: 2606 - Proposed Mixed use Development

Location: 20 Shepherd St, Liverpool


SESL Quote N°:


Sample Name: BH1 3.5m
Description: Soil
Test Type: USAWS

RECOMMENDATIONS

Analysed by SESL Australia

No commentary requested from SESL.

CATI	ON R	ATIOS	
Ratio		Result	Target Range
Ca:M	g	2.4	4.1 – 6.0
Comr	nent: C	Calcium lo	w
Mg:K		15.2	2.6 - 5.0
Comr	nent: F	otential F	Potassium deficiency
K/(Ca	+Mg)	0.02	< 0.07
Comr	nent: A	cceptable	е
K:Na		0.4	N/A
Sodiu	ım Ab	sorption	Ratio: 0 Low
Elect	rocher	nical Sta	bility Index (ESI):
0.03	•	•	for dispersion and
	soil s	tructure c	ollapse

SOLUBLE CATIONS (meq/100g)

Ca:

CATION BATIOS

Na:

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax: **Mailing Address:** PO Box 357 Em: info@sesl.com.au

Web:

www.sesl.com.au

Pennant Hills NSW 1715

Batch N°: 31531 Sample N°: 6 Date Received: 22/8/14 Report Status: O Draft Final

		PLAN	TAVAILABLE	NUTRIENT	S			
Major Nutrients	Result (mg/kg)	Very Low	₋ow Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)
Nitrate-N (NO ₃)	-					-	8	Did not test
Phosphate-P (PO ₄)	-					-	16.8	Did not test
Potassium (K) [†]	42.9					11.4	58.5	47.1
Sulphate-S (SO ₄)	-					-	18.1	18.1
Calcium (Ca) †	787					209.3	416.6	207.3
Magnesium (Mg) †	203					54	43.4	Drawdown
Iron (Fe)	-					-	146.8	Did not test
Manganese (Mn) †	-					-	11.7	Did not test
Zinc (Zn) †	-					-	1.3	Did not test
Copper (Cu)	-		"			-	1.7	Did not test
Boron (B) †	-					-	0.7	Did not test

Explanation of graph ranges:

Very Low

Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended Potential response to nutrient addition is >90%

Low

Potential "hidden hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90%

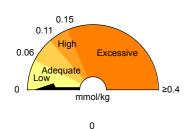
Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended Potential response to nutrient addition is 30

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to nutrient addition is 5 to

High


The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended Potential response to nutrient addition is <2%

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the **Adequate** band, which maximises growth/yield, and economic efficiency, and minimises impact on the environment.

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

Low. Plant response to applied P is likely.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): 6 Eff. Cation Exch. Capacity (eCEC): Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): -Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 27 The CGAR is corrected for a soil depth of 200mm and any Lime addition to achieve pH 6.0.

Physical Description

Sandy Clay Texture: Colour: Estimated clay content: 35 - 45% Size:

Gravel content: Not gravelly

Aggregate strength: Structural unit: Did not test Potential infiltration rate: Slow Permeability (mm/hr): Did not test Calculated EC_{SE} (dS/m):

- Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)[†]: Did not test

Organic Matter (OM%): -Additional comments:

Consultant: Kelly Lee

Authorised Signatory: Ryan Jacka

Date Report Generated 3/09/2014

1.2

METHOD REFERENCES:

PME I 100 - Rayment & Higginson (1992) 4A1, pH (1:5 GaClz) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chloride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESL in-house, Notation 1 (1984), Aluminium - SESL in-house, PO4, K, SO4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, C Buffer pH and Hydrogen - Adams-Evans (1972)
Texture/Structure/Colour - PM0003 (Texture"Northcote" (1992), Structure- "Murphy" (1991), Colour- "Munsell" (2000))

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report

ner: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax: PO Box 357 Mailing Address: Em: info@sesl.com.au Pennant Hills NSW 1715 Web: www.sesl.com.au

Batch N°: 31531 Sample N°: 12 Date Received: 22/8/14 Report Status: O Draft Final

Client Name: **Asset Geotechnical**

Client Contact: Joel Huang

Client Job N°:

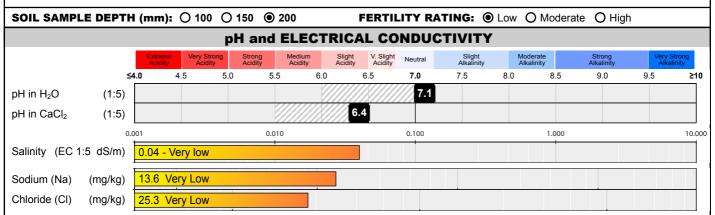
Client Order N°:

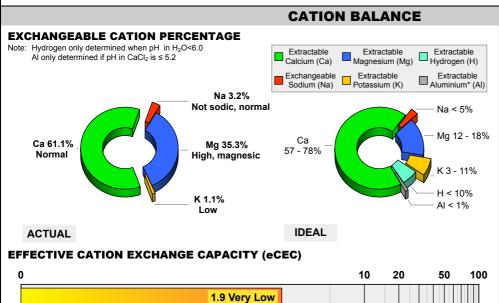
Address: Suite2.05/56 Delhi Rd

North Ryde NSW 2113

Project Name: 2606 - Proposed Mixed use Development

Location: 20 Shepherd St, Liverpool


SESL Quote N°:


Sample Name: BH1 6.5m Description: Test Type: **USAWS**

RECOMMENDATIONS

Analysed by SESL Australia

No commentary requested from SESL.

Ratio	Result	Target Range
Ca:Mg	1.7	4.1 - 6.0
Comment:	Calcium lo	W
Mg:K	33.5	2.6 - 5.0
Comment:	Potential F	otassium deficiency
K/(Ca+Mg)	0.01	< 0.07
Comment:	Acceptable	е
K:Na	0.3	N/A
Sodium Ab	sorption	Ratio: 0 Low
Electroche	mical Sta	bility Index (ESI):
J	potential	for dispersion and

CATION RATIOS

soil structure collapse

Ca:

SOLUBLE CATIONS (meq/100g)

Na:

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax: **Mailing Address:** PO Box 357 Em: info@sesl.com.au

Web:

www.sesl.com.au

Pennant Hills NSW 1715

Batch N°: 31531 Sample N°: 12 Date Received: 22/8/14 Report Status: O Draft Final

	PLANT AVAILABLE NUTRIENTS										
Major Nutrients	Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)		
Nitrate-N (NO ₃)	-						-	8	Did not test		
Phosphate-P (PO ₄)	-						-	16.8	Did not test		
Potassium (K) †	7.9						2.1	47.3	45.2		
Sulphate-S (SO ₄)	-						-	18.1	18.1		
Calcium (Ca) †	232						61.7	337	275.3		
Magnesium (Mg) †	81						21.5	35.6	14.1		
Iron (Fe)	-						-	146.8	Did not test		
Manganese (Mn) †	-						-	11.7	Did not test		
Zinc (Zn) †	-						-	1.3	Did not test		
Copper (Cu)	-			//			-	1.7	Did not test		
Boron (B) †	-						-	0.7	Did not test		

Explanation of graph ranges:

Very Low

Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended Potential response to nutrient addition is >90%

Low Potential "hidden

hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90%

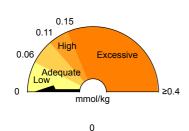
Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended Potential response to nutrient addition is 30

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to nutrient addition is 5 to

High


The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended Potential response to nutrient addition is <2%

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the **Adequate** band, which maximises growth/yield, and economic efficiency, and minimises impact on the environment.

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

Low. Plant response to applied P is likely.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): **1.9** Eff. Cation Exch. Capacity (eCEC): 1.9 Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): -Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 28 The CGAR is corrected for a soil depth of 200mm and any Lime addition to achieve pH 6.0.

Physical Description

Texture: Sand Colour: Estimated clay content: < 5% Size:

Gravel content: Not gravelly Aggregate strength:

Structural unit: Did not test Potential infiltration rate: Very Rapid Permeability (mm/hr): Did not test Calculated EC_{SE} (dS/m): 0.9

- Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)[†]: Did not test

Organic Matter (OM%): -Additional comments:

Consultant: Kelly Lee

Authorised Signatory: Ryan Jacka

Date Report Generated 3/09/2014

METHOD REFERENCES:

PME I 100 - Rayment & Higginson (1992) 4A1, pH (1:5 GaClz) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chloride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESL in-house, Notation 1 (1984), Aluminium - SESL in-house, PO4, K, SO4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, C Buffer pH and Hydrogen - Adams-Evans (1972)
Texture/Structure/Colour - PM0003 (Texture"Northcote" (1992), Structure- "Murphy" (1991), Colour- "Munsell" (2000))

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 Thornleigh NSW 2120 1300 64 46 89 Fax: PO Box 357 Mailing Address: Em: info@sesl.com.au

Web:

www.sesl.com.au

Pennant Hills NSW 1715

Batch N°: 31531 Sample N°: 20 Date Received: 22/8/14 Report Status: O Draft Final

Client Name: **Asset Geotechnical**

Client Contact: Joel Huang

Client Job N°:

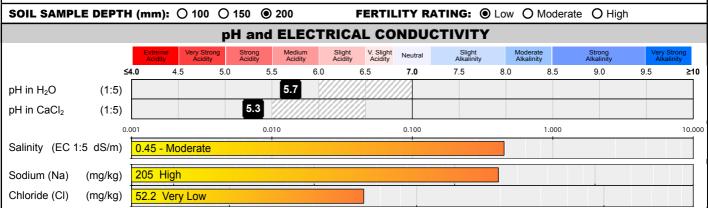
Client Order N°:

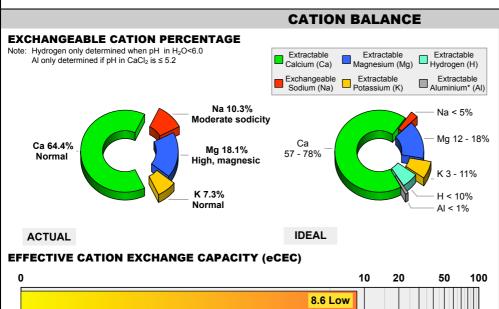
Address: North Ryde NSW 2113

Suite2.05/56 Delhi Rd

Project Name: 2606 - Proposed Mixed use Development

Location: 20 Shepherd St, Liverpool


SESL Quote N°:


Sample Name: BH4 4.0m Description: Test Type: **USAWS**

RECOMMENDATIONS

Analysed by SESL Australia

No commentary requested from SESL.

Rauo	Kesuit	i ai yet Kaliye
Ca:Mg	3.6	4.1 – 6.0
Comment:	Calcium lo	w
Mg:K	2.5	2.6 - 5.0
Comment:	Magnesiur	n low
K/(Ca+Mg)	0.09	< 0.07
Comment:	High	
K:Na	0.7	N/A
Sodium Ab	sorption	Ratio: 0 Low
Electroche	mical Stal	bility Index (ESI):
0.04 High	potential t	for dispersion and

CATION RATIOS

Pacult

Target Pange

Datio

soil structure collapse

SOLUBLE CATIONS (meq/100g) Na: Ca:

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax: **Mailing Address:** PO Box 357 Em: info@sesl.com.au

Web:

www.sesl.com.au

Pennant Hills NSW 1715

Batch N°: 31531 Sample N°: 20 Date Received: 22/8/14 Report Status: O Draft Final

	PLANT AVAILABLE NUTRIENTS										
Major Nutrients	Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)		
Nitrate-N (NO ₃)	-						-	8	Did not test		
Phosphate-P (PO ₄)	-						-	16.8	Did not test		
Potassium (K) †	246						65.4	58.5	Drawdown		
Sulphate-S (SO ₄)	-						-	18.1	18.1		
Calcium (Ca) †	1110						295.3	416.6	121.3		
Magnesium (Mg) †	190						50.5	43.4	Drawdown		
Iron (Fe)	-						-	146.8	Did not test		
Manganese (Mn) †	-						-	11.7	Did not test		
Zinc (Zn) †	-						-	1.3	Did not test		
Copper (Cu)	-			//			-	1.7	Did not test		
Boron (B) †	-						-	0.7	Did not test		

Explanation of graph ranges:

Very Low

Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended Potential response to nutrient addition is >90%

Low

Potential "hidden hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90%

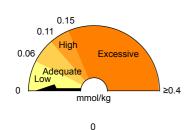
Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended Potential response to nutrient addition is 30

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to nutrient addition is 5 to

High


The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended Potential response to nutrient addition is <2%

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the **Adequate** band, which maximises growth/yield, and economic efficiency, and minimises impact on the environment.

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

Low. Plant response to applied P is likely.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): **8.6** Eff. Cation Exch. Capacity (eCEC): 8.6 Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): -

Exchangeable Acidity (%): Lime Application Rate

- to achieve pH 6.0 (g/sqm):
- to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 61 The CGAR is corrected for a soil depth of 200mm and any Lime addition to achieve pH 6.0.

Physical Description

Sandy Clay Texture: Colour: Estimated clay content: 35 - 45% Size:

Gravel content: Not gravelly

Aggregate strength: Structural unit: Did not test Potential infiltration rate: Slow

Permeability (mm/hr): Did not test Calculated EC_{SE} (dS/m): 3.9

- Slightly saline. Growth on sensitive plant species is effected.

Organic Carbon (OC%)[†]: Did not test

Organic Matter (OM%): -Additional comments:

Consultant: Kelly Lee Authorised Signatory: Ryan Jacka

Date Report Generated 3/09/2014

METHOD REFERENCES:

PME I 100 - Rayment & Higginson (1992) 4A1, pH (1:5 GaClz) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chloride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESL in-house, Notation 1 (1984), Aluminium - SESL in-house, PO4, K, SO4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, C Buffer pH and Hydrogen - Adams-Evans (1972)
Texture/Structure/Colour - PM0003 (Texture"Northcote" (1992), Structure- "Murphy" (1991), Colour- "Munsell" (2000))

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report

ner: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full

Mehlich 3 - Multi-nutrient Extractant

 Sample Drop Off:
 16 Chilvers Road Thornleigh NSW 2120
 Tel:
 1300 30 40 80 Fax:
 1300 64 46 89

 Mailing Address:
 PO Box 357 Pennant Hills NSW 1715
 Em:
 info@sesl.com.au

 Web:
 www.sesl.com.au

Client Name: Asset Geotechnical

Client Contact: Joel Huang

Client Job N°:

Client Order N°:

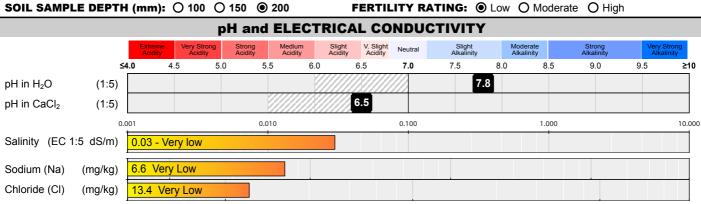
Address: Suite2.05/56 Delhi Rd

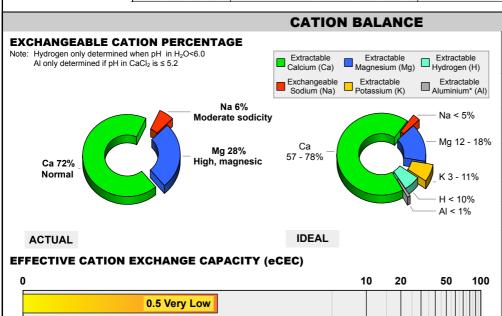
North Ryde NSW 2113

Project Name: 2606 - Proposed Mixed use Development

Location: 20 Shepherd St, Liverpool

SESL Quote N°:


Sample Name: BH4 SPT 7-7.45m


Description: Soil
Test Type: USAWS

RECOMMENDATIONS

Analysed by SESL Australia

No commentary requested from SESL.

Ratio	•	Result	Target Range
Ca:M	lg	2.6	4.1 - 6.0
Comi	ment: C	alcium lo	ow .
Mg:K	(?	2.6 – 5.0
Comi	ment: P	otential F	Potassium deficiency
K/(Ca	a+Mg)	0	< 0.07
Comi	ment: A	cceptable	е
K:Na		0	N/A
Sodi	um Abs	orption	Ratio: 0 Low
Elect	rochen	nical Sta	bility Index (ESI):
0.01		potential tructure c	for dispersion and ollapse

CATION RATIOS

SOLUBLE CATIONS (meq/100g)

Na: K: Ca: Mg:

Mehlich 3 - Multi-nutrient Extractant

Sample Drop Off: 16 Chilvers Road Tel: 1300 30 40 80 1300 64 46 89 Thornleigh NSW 2120 Fax: **Mailing Address:** PO Box 357 Em: info@sesl.com.au

Web:

www.sesl.com.au

Pennant Hills NSW 1715

Batch N°: 31531 Sample N°: 21 Date Received: 22/8/14 Report Status: O Draft Final

PLANT AVAILABLE NUTRIENTS										
Result (mg/kg)	Very Low	Low	Marginal	Adequate	High	Result (g/sqm)	Desirable (g/sqm)	Adjustment (g/sqm)		
-						-	8	Did not test		
-						-	16.8	Did not test		
<3.90						1	47.3	46.3		
-						-	18.1	18.1		
72						19.2	337	317.8		
17						4.5	35.6	31.1		
-						-	146.8	Did not test		
-						-	11.7	Did not test		
-						-	1.3	Did not test		
-			7			-	1.7	Did not test		
-						-	0.7	Did not test		
	(mg/kg) <3.90 - 72 17	Result (mg/kg) Very Low - - <3.90	Result (mg/kg) Very Low Low - - <3.90	Result (mg/kg) Very Low Low Marginal - <td< td=""><td>Result (mg/kg) Very Low Marginal Adequate - - - - - 72 17 - - - - - - - - - - - - -</td><td>Result (mg/kg) Very Low Marginal Adequate High - - - - - 17 17 - - - - - - - - - - - - -</td><td>Result (mg/kg) Very Low Low Marginal Adequate High Result (g/sqm) -</td><td>Result (mg/kg) Very Low Low Marginal Adequate High (g/sqm) Desirable (g/sqm) - - 8 - 16.8 <3.90</td> 1 47.3 - 18.1 72 19.2 337 17 4.5 35.6 - 146.8 - 1.3 - 1.3 - 1.7</td<>	Result (mg/kg) Very Low Marginal Adequate - - - - - 72 17 - - - - - - - - - - - - -	Result (mg/kg) Very Low Marginal Adequate High - - - - - 17 17 - - - - - - - - - - - - -	Result (mg/kg) Very Low Low Marginal Adequate High Result (g/sqm) -	Result (mg/kg) Very Low Low Marginal Adequate High (g/sqm) Desirable (g/sqm) - - 8 - 16.8 <3.90		

Explanation of graph ranges:

Very Low

Growth is likely to be severely depressed and deficiency symptoms present. Large applications for soil building purposes are usually recommended Potential response to nutrient addition is >90%

Low

Potential "hidden hunger", or sub-clinical deficiency. Potential response to nutrient addition is 60 to 90%

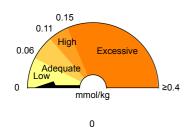
Marginal

Supply of this nutrient is barely adequate for the plant, and build-up is still recommended Potential response to nutrient addition is 30

Adequate

Supply of this nutrient is adequate for the plant, and and only maintenance application rates are recommended. Potential response to nutrient addition is 5 to

High


The level is excessive and may be detrimental to plant growth (i.e. phytotoxic) and may contribute to pollution of ground and surface waters. Drawdown is recommended Potential response to nutrient addition is <2%

NOTES: Adjustment recommendation calculates the elemental application to shift the soil test level to within the **Adequate** band, which maximises growth/yield, and economic efficiency, and minimises impact on the environment.

Drawdown: The objective nutrient management is to utilise residual soil nutrients. There is no agronomic reason to apply fertiliser when soil test levels exceed

/sqm measurements are based on soil bulk density of 1.33 tonne/m³ and selected soil depth.

Phosphorus Saturation Index

Low. Plant response to applied P is likely.

Exchangeable Acidity

Adams-Evans Buffer pH (BpH): Sum of Base Cations (meq/100g⁻¹): **0.5** Eff. Cation Exch. Capacity (eCEC): 0.5 Base Saturation (%): 100 Exchangeable Acidity (meq/100g⁻¹): -Exchangeable Acidity (%):

Lime Application Rate

- to achieve pH 6.0 (g/sqm): 0 - to neutralise Al (g/sqm):

Gypsum Application Rate

- to achieve 67.5% exch. Ca (g/sqm): 0 The CGAR is corrected for a soil depth of 200mm and any Lime addition to achieve pH 6.0.

Physical Description

Texture: Sand Colour: Estimated clay content: < 5% Size:

Gravel content: Not gravelly

Aggregate strength: Structural unit: Did not test Potential infiltration rate: Very Rapid Permeability (mm/hr): Did not test Calculated EC_{SE} (dS/m): 0.7

- Non-saline. Salinity effects on plants are mostly negligible.

Organic Carbon (OC%)[†]: Did not test

Organic Matter (OM%): -Additional comments:

Consultant: Kelly Lee Authorised Signatory: Ryan Jacka

Date Report Generated 3/09/2014

METHOD REFERENCES:

PME I 100 - Rayment & Higginson (1992) 4A1, pH (1:5 GaClz) - Rayment & Higginson (1992) 4B1, EC (1:5) - Rayment & Higginson (1992) 3A1, Chloride - Rayment & Higginson (1992) 5A2, Nitrate - Rayment & Higginson (1992) 7B1 Aluminium - SESL in-house, Notation 1 (1984), Aluminium - SESL in-house, PO4, K, SO4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, Ca, Mg, Na, Fe, Mn, Zn, Cu, B - Mehlich 3 (1984), Cu, So4, C Buffer pH and Hydrogen - Adams-Evans (1972)
Texture/Structure/Colour - PM0003 (Texture"Northcote" (1992), Structure- "Murphy" (1991), Colour- "Munsell" (2000))

A member of the Australasian Soil and Plant Analysis Council † This laboratory has been awarded a Certificate of Proficiency for specific soil and plant tissue analyses by the Australasian Soil and Plant Analysis Council (ASPAC). Tests for which proficiency has been demonstrated are highlighted in this report

ner: Tests are performed under a quality system complying with ISO 9001: 2008. Results are based on the analysis of the sample taken or received by SESL. Due to the variability of sampling procedures, environmental conditions and managerial factors, SESL does not accept any liability for a lack of performance based on its interpretation and recommendations. This document must not be reproduced except in full